安徽省示范高中金榜教育2022年高三(最后冲刺)数学试卷含解析_第1页
安徽省示范高中金榜教育2022年高三(最后冲刺)数学试卷含解析_第2页
安徽省示范高中金榜教育2022年高三(最后冲刺)数学试卷含解析_第3页
安徽省示范高中金榜教育2022年高三(最后冲刺)数学试卷含解析_第4页
安徽省示范高中金榜教育2022年高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.2.若均为任意实数,且,则的最小值为()A. B. C. D.3.已知双曲线的右焦点为为坐标原点,以为直径的圆与双曲线的一条渐近线交于点及点,则双曲线的方程为()A. B. C. D.4.已知各项都为正的等差数列中,,若,,成等比数列,则()A. B. C. D.5.函数在上为增函数,则的值可以是()A.0 B. C. D.6.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.7.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)8.“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.4329.函数f(x)=2x-3A.[32C.[3210.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A. B. C. D.大小关系不能确定11.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.312.若函数()的图象过点,则()A.函数的值域是 B.点是的一个对称中心C.函数的最小正周期是 D.直线是的一条对称轴二、填空题:本题共4小题,每小题5分,共20分。13.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.14.如图,在梯形中,∥,分别是的中点,若,则的值为___________.15.在正方体中,已知点在直线上运动,则下列四个命题中:①三棱锥的体积不变;②;③当为中点时,二面角的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)16.设等比数列的前项和为,若,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.19.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?20.(12分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.22.(10分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.2.D【解析】

该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.3.C【解析】

根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【详解】由双曲线,则渐近线方程:,,连接,则,解得,所以,解得.故双曲线方程为.故选:C【点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.4.A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.5.D【解析】

依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.6.A【解析】

先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.7.C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.8.C【解析】

四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.9.A【解析】

根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx10.B【解析】

先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得.【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为.又,故.故选B.【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题.11.D【解析】

利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.12.A【解析】

根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,,,故,对于A,由,则,故A正确;对于B,当时,,故B错误;对于C,,故C错误;对于D,当时,,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.14.【解析】

建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以,,由,得,即,又,所以,故,,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.15.①②④【解析】

①∵,∴平面

,得出上任意一点到平面的距离相等,所以判断命题①;②由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题②;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题③;④过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题④.【详解】①∵,∴平面

,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以①正确;

②在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正确;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,,所以,设面的法向量为,则,即,令,则,设面的法向量为,,即,,由图示可知,二面角是锐二面角,所以二面角的余弦值为,所以③不正确;④过作平面交于点,做点关于面对称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值.因为正方体的棱长为2,所以设点的坐标为,,,所以,所以,又所以,所以,,,故④正确.

故答案为:①②④.【点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.16.【解析】

由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解.【详解】由题意,设等比数列的公比为,因为,即,解得,,所以.【点睛】本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)①证明见解析;②证明见解析【解析】

(1)解方程即可;(2)①设直线,,,将点的坐标用表示,证明即可;②分别用表示,,的面积即可.【详解】(1)解之得:的标准方程为:(2)①,,设直线代入椭圆方程:设,,,直线,直线,,,,,.②,所以.【点睛】本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.18.(1),;(2)或【解析】

(1)根据曲线的参数方程消去参数,可得曲线的直角坐标方程,再由,,可得点的轨迹的极坐标方程;(2)将曲线极坐标方程求,与直线极坐标方程联立,消去,得到关于的二次方程,由的几何意义可求出,而(1)可知,然后列方程可求出的值.【详解】(1)曲线的直角坐标方程为,圆的圆心为,设,所以,则由,即为点轨迹的极坐标方程.(2)曲线的极坐标方程为,将与曲线的极坐标方程联立得,,设,所以,,由,即,令,上述方程可化为,解得.由,所以,即或.【点睛】此题考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,利用极坐标求点的轨迹方程,考查运算求解能力,考查数形结合思想,属于中档题.19.(1)30;(2),比较划算.【解析】

(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式即可求出结果,最后取近似值即可;(2)分别计算参保与不参保时的期望,,比较大小即可.【详解】解:(1)由,解得.保险公司每年收取的保费为:∴要使公司不亏本,则,即解得∴.(2)①若该老人购买了此项保险,则的取值为∴(元).②若该老人没有购买此项保险,则的取值为.∴(元).∴年龄为的该老人购买此项保险比较划算.【点睛】本题考查学生利用相关统计图表知识处理实际问题的能力,掌握频率分布直方图的基本性质,知道数学期望是平均数的另一种数学语言,为容易题.20.(1)①见解析,②见解析;(2)见解析【解析】

(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.【详解】解:(1)①当时,,,,又,切线方程为,即;②令,则,在上单调递减.又,当时,,即;当时,,即;当时,,即.证明:(2)由题意,,而,令,解得.,,在上有唯一零点.当时,,在上单调递减,当,时,,在,上单调递增..在恒成立,且有唯一解,,即,消去,得,即.令,则,在上恒成立,在上单调递减,又,,.在上单调递增,.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论