怎样求合力课件_第1页
怎样求合力课件_第2页
怎样求合力课件_第3页
怎样求合力课件_第4页
怎样求合力课件_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.1怎样求合力第4章怎样求合力与分力4.1怎样求合力第4章怎样求合力与分力11.知道合力和分力的概念。2.探究力的合成法则。3.会用计算法和作图法求合力。4.进一步明确矢量和标量的概念。1.知道合力和分力的概念。2杨浦大桥是一座跨越黄浦江的自行设计、建造的双塔双索面迭合梁斜拉桥。主桥犹如一道横跨浦江的彩虹,在世界同类型斜拉桥中雄居第一。请同学们观察思考为什么塔柱上挂了这么多钢索而没有被拉倾斜呢?杨浦大桥是一座跨越黄浦江的自行设计、建造的双塔双索面迭3如图,斜拉桥塔柱两侧的钢索呈对称分布,它们合起来的作用效果让塔柱好像受到一个竖直向下的力F一样。这样塔柱便能稳固地矗立在桥墩上,不会因为钢索的牵引而发生倾斜。如图,斜拉桥塔柱两侧的钢索呈对称分布,它们合起来的作用效果让4一、合力与分力一个力如果它产生的效果跟几个力共同作用的效果相同,则这个力就叫那几个力的合力,而那几个力就叫这个力的分力。

一、合力与分力一个力如果它产生的效果跟几个力共同作用的效果相5如上图,斜拉桥左右两钢索的拉力产生的效果和力F单独产生的效果相同,所以力F就是,的合力,,是力F的分力。合力与分力的相互替代是等效替代的关系,所以在受力分析时不能同时出现分力和合力。如上图,斜拉桥左右两钢索的拉力产生的效果和力F单独合力与分力6二、力的合成法则实验探究提出问题:合力F与它的两个分力F1,F2之间有什么关系?猜想与假设:1.合力的大小可能等于两个分力的大小之和。2.合力的大小一定比任何一个分力都大。同学们还有哪些猜想呢?你的理由是什么?请同学们说一说。二、力的合成法则实验探究提出问题:合力F与它的两个分力F1,7制定计划与设计实验:给出如图所示的几种器材,你能利用它们验证自己的猜想是否正确吗?制定计划与设计实验:给出如图所示的几种器材,你能利用它们验证8一组同学设计的实验过程如下:1.在图板上固定好一张白纸,将橡皮筋的一端固定在板上某点A处,过A画一条标记线AB。2.用两个测力计钩住橡皮筋下端的线圈,对称地把橡皮筋下端拉至O,标好O点的位置(注意,橡皮筋要与标记线重合),记下来夹角θ和拉力F1,F2的大小。3.改用一个测力计把橡皮筋下端同样拉至O点,记下拉力F的大小。一组同学设计的实验过程如下:1.在图板上固定好一张白纸,将橡9请同学们根据上面的实验过程回答以下问题:1.这个实验的依据是什么?合力和分力的作用效果是等效的。2.得到一组数据后,怎样去发现隐藏在其中的物理规律?选择同一个标度,过O点作出这几个力的图示,通过图形能够直观的看到其中的规律。3.两个测力计沿着AB线两侧对称的拉是一种特殊的情况,怎样才能找出一般的情况下的规律呢?拉两个测力计时,让它们与AB的夹角不同,但保证拉的时候橡皮筋仍沿AB拉伸到O点,分别记下F1,F2的大小和夹角,再作图研究规律。请同学们根据上面的实验过程回答以下问题:1.这个实验的依据是10两个共点力的合力,可以用以表示这两个力的线段为邻边构成的平行四边形的对角线来表示,这就是力的平行四边形定则。合成法则进行探究活动,并把最满意的实验结果画在纸上。让同学们看一看你最满意的实验结果,大家互相评价一下。两个共点力的合力,可以用以表示这两个力的线段为邻边构成的平行11例题1:假设一座斜拉桥中某对钢索与竖直方向的夹角都是30°,每根钢索中的拉力都是3×104N,那么它们对塔柱形成的合力有多大?方向如何?解题提示:以两根钢索的拉力为邻边画出一个平行四边形。例题1:假设一座斜拉桥中某对钢索与竖直方向的夹角都是30°,12解答:(1)图解法取单位长度为1×104N,自O点画两根长度都是3个单位长度的有向线段OA和OB,它们与竖直方向的夹角都为30°。量得对角线OC长为5.2个单位长度,如图所示,所以合力大小为方向竖直向下解答:(1)图解法取单位长度为1×104N,自O点画两根长13计算法根据这个平行四边形是个菱形的特点,连接AB,交OC与D,则AB与OC互相垂直平分,利用三角形的知识求解。由几何知识知AB与OC垂直平分,方向竖直向下计算法根据这个平行四边形是个菱形的特点,连接AB,交OC与D14求合力的两种方法:(1)图解法从力的作用点沿两个分力的作用方向,按同一标度作出两个分力F1和F2,并画成一个平行四边形,这个平行四边形的对角线的长度按同样比例表示合力的大小,对角线的方向就是合力的方向。通常可用量角器直接量出它与某一个分力方向的角度。(2)计算法用公式计算出合力的大小。求合力的两种方法:(1)图解法从力的作用点沿两个分力的作用方15练习1:两个共点力间的夹角是90º,力的大小分别为90N和120N,试用作图法和计算法求合力的大小和方向。F1F2FO30N53º(2)计算法解:(1)作图法如图所示,量得合力的大小为150N,合力F与F1的夹角为53º。练习1:两个共点力间的夹角是90º,力的大小分别为90N和16矢量:既有大小,又有方向的量如:力,位移,速度,加速度等。标量:只有大小,没有方向的量。如:质量,时间,温度等。二、矢量与标量矢量:既有大小,又有方向的量二、矢量与标量171.两个力F1和F2的夹角在由0°变为180°过程中,合力的大小怎样变化?你能不能确定出两个力的合力大小范围?2.合力的大小一定大于分力的大小吗?思考讨论1.两个力F1和F2的夹角在由0°变为180°过程中,合力的18合力与分力间夹角关系:①θ=0°时,F=F1+F2合力与分力同向②θ=180°时,F=|F1-F2|合力与分力F1、F2中较大的同向。③合力的取值范围,|F1-F2|≤F≤F1+F2

④夹角θ越大,合力就越小。⑤合力可能大于某一分力,也可能小于某一分力。任意夹角θ时怎样求合力?合力与分力间夹角关系:①θ=0°时,F=F1+F2合力与分力19当两个共点力成任意夹角θ时,画出力的平行四边形后,由余弦定理可知合力的大小为:方向为:当两个共点力成任意夹角θ时,画出力的平行四边形后,由余201.关于两个大小不变的共点力F1、F2与其合力F的关系,下列说法中正确的是()A.F的大小随F1、F2间夹角的增大而增大B.F的大小一定大于F1、F2中的最大者C.F的大小随F1、F2间夹角的增大而减小D.F的大小不能小于F1、F2中的最小者C1.关于两个大小不变的共点力F1、F2与其合力F的关系,C212.两个共点力,大小都是50N,如果要使这两个力的合力也是50N,这两个力之间的夹角应为()A.300B.600C.1200D.1500C3.两个共点力的合力的最大值为35N,最小值为5N,则这两个力的大小分别为_____N和_____N,若这两力的夹角为900,则合力的大小为_____N.1520252.两个共点力,大小都是50N,如果要使这两个力的合C3.两22本节课讲述了力的合成的概念及其应用,使学生们能接受力的合成,并能结合现实进行运用。本节课讲述了力的合成的概念及其应用,使学生们能接受力234.1怎样求合力第4章怎样求合力与分力4.1怎样求合力第4章怎样求合力与分力241.知道合力和分力的概念。2.探究力的合成法则。3.会用计算法和作图法求合力。4.进一步明确矢量和标量的概念。1.知道合力和分力的概念。25杨浦大桥是一座跨越黄浦江的自行设计、建造的双塔双索面迭合梁斜拉桥。主桥犹如一道横跨浦江的彩虹,在世界同类型斜拉桥中雄居第一。请同学们观察思考为什么塔柱上挂了这么多钢索而没有被拉倾斜呢?杨浦大桥是一座跨越黄浦江的自行设计、建造的双塔双索面迭26如图,斜拉桥塔柱两侧的钢索呈对称分布,它们合起来的作用效果让塔柱好像受到一个竖直向下的力F一样。这样塔柱便能稳固地矗立在桥墩上,不会因为钢索的牵引而发生倾斜。如图,斜拉桥塔柱两侧的钢索呈对称分布,它们合起来的作用效果让27一、合力与分力一个力如果它产生的效果跟几个力共同作用的效果相同,则这个力就叫那几个力的合力,而那几个力就叫这个力的分力。

一、合力与分力一个力如果它产生的效果跟几个力共同作用的效果相28如上图,斜拉桥左右两钢索的拉力产生的效果和力F单独产生的效果相同,所以力F就是,的合力,,是力F的分力。合力与分力的相互替代是等效替代的关系,所以在受力分析时不能同时出现分力和合力。如上图,斜拉桥左右两钢索的拉力产生的效果和力F单独合力与分力29二、力的合成法则实验探究提出问题:合力F与它的两个分力F1,F2之间有什么关系?猜想与假设:1.合力的大小可能等于两个分力的大小之和。2.合力的大小一定比任何一个分力都大。同学们还有哪些猜想呢?你的理由是什么?请同学们说一说。二、力的合成法则实验探究提出问题:合力F与它的两个分力F1,30制定计划与设计实验:给出如图所示的几种器材,你能利用它们验证自己的猜想是否正确吗?制定计划与设计实验:给出如图所示的几种器材,你能利用它们验证31一组同学设计的实验过程如下:1.在图板上固定好一张白纸,将橡皮筋的一端固定在板上某点A处,过A画一条标记线AB。2.用两个测力计钩住橡皮筋下端的线圈,对称地把橡皮筋下端拉至O,标好O点的位置(注意,橡皮筋要与标记线重合),记下来夹角θ和拉力F1,F2的大小。3.改用一个测力计把橡皮筋下端同样拉至O点,记下拉力F的大小。一组同学设计的实验过程如下:1.在图板上固定好一张白纸,将橡32请同学们根据上面的实验过程回答以下问题:1.这个实验的依据是什么?合力和分力的作用效果是等效的。2.得到一组数据后,怎样去发现隐藏在其中的物理规律?选择同一个标度,过O点作出这几个力的图示,通过图形能够直观的看到其中的规律。3.两个测力计沿着AB线两侧对称的拉是一种特殊的情况,怎样才能找出一般的情况下的规律呢?拉两个测力计时,让它们与AB的夹角不同,但保证拉的时候橡皮筋仍沿AB拉伸到O点,分别记下F1,F2的大小和夹角,再作图研究规律。请同学们根据上面的实验过程回答以下问题:1.这个实验的依据是33两个共点力的合力,可以用以表示这两个力的线段为邻边构成的平行四边形的对角线来表示,这就是力的平行四边形定则。合成法则进行探究活动,并把最满意的实验结果画在纸上。让同学们看一看你最满意的实验结果,大家互相评价一下。两个共点力的合力,可以用以表示这两个力的线段为邻边构成的平行34例题1:假设一座斜拉桥中某对钢索与竖直方向的夹角都是30°,每根钢索中的拉力都是3×104N,那么它们对塔柱形成的合力有多大?方向如何?解题提示:以两根钢索的拉力为邻边画出一个平行四边形。例题1:假设一座斜拉桥中某对钢索与竖直方向的夹角都是30°,35解答:(1)图解法取单位长度为1×104N,自O点画两根长度都是3个单位长度的有向线段OA和OB,它们与竖直方向的夹角都为30°。量得对角线OC长为5.2个单位长度,如图所示,所以合力大小为方向竖直向下解答:(1)图解法取单位长度为1×104N,自O点画两根长36计算法根据这个平行四边形是个菱形的特点,连接AB,交OC与D,则AB与OC互相垂直平分,利用三角形的知识求解。由几何知识知AB与OC垂直平分,方向竖直向下计算法根据这个平行四边形是个菱形的特点,连接AB,交OC与D37求合力的两种方法:(1)图解法从力的作用点沿两个分力的作用方向,按同一标度作出两个分力F1和F2,并画成一个平行四边形,这个平行四边形的对角线的长度按同样比例表示合力的大小,对角线的方向就是合力的方向。通常可用量角器直接量出它与某一个分力方向的角度。(2)计算法用公式计算出合力的大小。求合力的两种方法:(1)图解法从力的作用点沿两个分力的作用方38练习1:两个共点力间的夹角是90º,力的大小分别为90N和120N,试用作图法和计算法求合力的大小和方向。F1F2FO30N53º(2)计算法解:(1)作图法如图所示,量得合力的大小为150N,合力F与F1的夹角为53º。练习1:两个共点力间的夹角是90º,力的大小分别为90N和39矢量:既有大小,又有方向的量如:力,位移,速度,加速度等。标量:只有大小,没有方向的量。如:质量,时间,温度等。二、矢量与标量矢量:既有大小,又有方向的量二、矢量与标量401.两个力F1和F2的夹角在由0°变为180°过程中,合力的大小怎样变化?你能不能确定出两个力的合力大小范围?2.合力的大小一定大于分力的大小吗?思考讨论1.两个力F1和F2的夹角在由0°变为180°过程中,合力的41合力与分力间夹角关系:①θ=0°时,F=F1+F2合力与分力同向②θ=180°时,F=|F1-F2|合力与分力F1、F2中较大的同向。③合力的取值范围,|F1-F2|≤F≤F1+F2

④夹角θ越大,合力就越小。⑤合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论