版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知向量,满足,,且与的夹角为,则()A. B.C. D.2.设命题,则为A. B.C. D.3.已知函数的定义域为,则函数的定义域为()A. B.C. D.4.已知函数,且,则()A. B.C. D.5.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.6.下列函数中,在区间上是增函数是A. B.C. D.7.已知,求的值()A. B.C. D.8.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}9.计算cos(-780°)的值是()A.- B.-C. D.10.设,则A. B.0C.1 D.11.指数函数在R上单调递减,则实数a的取值范围是()A. B.C. D.12.某组合体的三视图如下,则它的体积是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若函数在区间上单调递增,则实数的取值范围是__________.14.已知点,,则以线段为直径的圆的标准方程是__________15.已知,若,使得,若的最大值为,最小值为,则__________16.已知一组数据的平均数,方差,则另外一组数据的平均数为___________,方差为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.18.在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量,(单位:元)表示利润.(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;(Ⅱ)将表示为的函数;(Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.19.已知集合,(1)当m=5时,求A∩B,;(2)若,求实数m取值范围20.已知角的终边经过点,求的值;已知,求的值21.已知函数的图象过点与点.(1)求,的值;(2)若,且,满足条件的的值.22.已知函数是定义域为上的奇函数,且(1)求的解析式;(2)用定义证明:在上增函数.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.2、C【解析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.3、B【解析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B4、B【解析】构造函数,判断的单调性和奇偶性,由此化简不等式,即得.【详解】∵函数,令,则,∴的定义域为,,所以函数为奇函数,又,当增大时,增大,即在上递增,由,可得,即,∴,∴,即.故选:B.5、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题6、A【解析】由题意得函数在上为增函数,函数在上都为减函数.选A7、A【解析】利用同角三角函数的基本关系,即可得到答案;【详解】,故选:A8、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B9、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可【详解】cos(-780°)=cos780°=cos60°=故选C【点睛】本题考查余弦函数的应用,三角函数的化简求值,考查计算能力10、B【解析】详解】故选11、D【解析】由已知条件结合指数函数的性质列不等式求解即可【详解】因为指数函数在R上单调递减,所以,得,所以实数a的取值范围是,故选:D12、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:14、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.15、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.16、①.32②.135【解析】由平均数与方差的性质即可求解.【详解】由题意,数据的平均数为,方差为.故答案为:;三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.18、(1)平均数为75.5,众数为75,中位数为75.(2).(3)该天食堂利润不少于760元的概率为0.65.【解析】由频率分布直方图的数值计算可得平均数,众数,中位数由题意,当时,求出利润,当时,求出利润,由此能求出关于的函数解析式设利润不少于元为事件,利润不少于元时,即,再根据直方图利用概率计算公式求出对应的概率【详解】(Ⅰ)由频率分布直方图知,故中位数位于(70.,80)设为x,则(x-70)所以平均数为75.5,众数为75,中位数为75.(Ⅱ)一斤米粉的售价是元.当时,当时,故(Ⅲ)设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,故该天食堂利润不少于760元的概率为0.65.【点睛】本题主要考查了样本估计总体和事件与概率,只要能读懂条形统计图,然后进行计算即可,较为基础19、(1),(2)【解析】(1)根据集合的交集、并集运算即得解;(2)转化为,分,两种情况讨论,列出不等式控制范围,求解即可【小问1详解】(1)当时,可得集合,,根据集合的运算,得,.【小问2详解】解:由,可得,①当时,可得,解得;②当时,则满足,解得,综上实数的取值范围是.20、(1);(2)【解析】由题意利用任意角的三角函数的定义,诱导公式,求得要求式子的值利用查同角三角函数的基本关系,求得要求式子的值【详解】(1)由题意,因为角的终边经过点,,,(2)由题意,知,所以【点睛】本题主要考查了任意角三角函数的定义与诱导公式,及同角三角函数的基本关系的化简求解,其中解答中熟记三角函数的定义和三角函数的基本关系式,合理应用诱导公式是解答的关键,属于基础题,着重考查了运算与求解能力.21、(1),;(2).【解析】(1)由给定条件列出关于,的方程组,解之即得;(2)由(1)的结论列出指数方程,借助换元法即可作答.【详解】(1)由题意可得,解得,,(2)由(1)可得,而,且,于是有,设,,从而得,解得,即,解得,所以满足条件的.22、(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人体工程考试试题及答案
- 贵州省黔东南苗族侗族自治州2024-2025学年八年级上学期期末地理试题(解析版)
- 广东省肇庆市封开县2024-2025学年八年级上学期期末地理试题(含答案)
- 能量管理培训
- 2026年深圳中考语文文言文断句专项试卷(附答案可下载)
- 2026年深圳中考物理一轮复习验收试卷(附答案可下载)
- 2026年大学大二(交通工程)交通系统规划基础测试题及答案
- 2026年深圳中考生物重难点突破试卷(附答案可下载)
- 2026年深圳中考生物免疫与计划免疫试卷(附答案可下载)
- 2026年深圳中考历史新航路开辟与殖民扩张试卷(附答案可下载)
- 苗木育苗方式
- 通信原理-脉冲编码调制(PCM)
- 进阶切分技法advanced funk studies rick latham-蓝色加粗字
- 省直单位公费医疗管理办法实施细则
- 附录 阿特拉斯空压机操作手册
- JJG 693-2011可燃气体检测报警器
- GB/T 39557-2020家用电冰箱换热器
- BB/T 0019-2000包装容器方罐与扁圆罐
- 凝气式汽轮机和离心式压缩机
- 锂电池生产流程作业指导书
- 建房界址四邻无争议确认表
评论
0/150
提交评论