



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届广东省中学山市十二校联考中考押题数学预测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.53.圆锥的底面半径为2,母线长为4,则它的侧面积为()A.8π B.16π
C.4π D.4π4.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B.C. D.5.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A.10,1 B.7,8 C.1,6.1 D.1,66.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A. B.C. D.7.如图是一个几何体的三视图,则这个几何体是()A. B. C. D.8.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为A. B. C.2 D.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是()A.①②④ B.①③ C.①②③ D.①③④10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=45,反比例函数yA.10B.9C.8D.6二、填空题(共7小题,每小题3分,满分21分)11.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.12.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.13.方程的解是__________.14.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.15.若关于x的方程有两个相等的实数根,则m的值是_________.16.一元二次方程x﹣1=x2﹣1的根是_____.17.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.三、解答题(共7小题,满分69分)18.(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中n,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.19.(5分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴的正半轴上,OA=6,点B在直线y=34x上,直线l:y=kx+92与折线AB-BC有公共点.点B的坐标是;若直线l经过点B,求直线l的解析式;对于一次函数y=kx+9220.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.21.(10分)计算:﹣|﹣2|+()﹣1﹣2cos45°22.(10分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.23.(12分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.24.(14分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【答案解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2、D【答案解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【题目详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【答案点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.3、A【答案解析】
解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.4、D【答案解析】
当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【题目详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【答案点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.5、D【答案解析】
根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.【题目详解】解:这11个数据的中位数是第8个数据,且中位数为1,,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元.故选:.【答案点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.6、A【答案解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【题目详解】如图,点E即为所求作的点.故选:A.【答案点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.7、B【答案解析】测试卷分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.8、A【答案解析】
连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【题目详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD=,故选A.【答案点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.9、B【答案解析】∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;由图象可知,当﹣1<x<3时,y<0,②错误;由图象可知,当x=1时,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故④错误;故选B.点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.10、A【答案解析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA•sin∠AOB=45a,OM=OA2∴点A的坐标为(35a,4∵点A在反比例函数y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF•sin∠FBN=45b,BN=BF2∴点F的坐标为(10+35b,4∵点F在反比例函数y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故选A.“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA二、填空题(共7小题,每小题3分,满分21分)11、1【答案解析】
∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.12、-23≤y≤2【答案解析】
先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【题目详解】解:∵a=-1,
∴抛物线的开口向下,故有最大值,
∵对称轴x=-3,
∴当x=-3时y最大为2,
当x=2时y最小为-23,
∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【答案点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.13、x=1【答案解析】
将方程两边平方后求解,注意检验.【题目详解】将方程两边平方得x-3=4,移项得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本题答案为:x=1.【答案点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.14、.【答案解析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:,故答案为.【答案点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15、m=-【答案解析】
根据题意可以得到△=0,从而可以求得m的值.【题目详解】∵关于x的方程有两个相等的实数根,∴△=,解得:.故答案为.16、x=0或x=1.【答案解析】
利用因式分解法求解可得.【题目详解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,则x=0或x=1,故答案为:x=0或x=1.【答案点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17、50【答案解析】
根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.【题目详解】解:设铅直距离为x,则水平距离为,根据题意得:,解得:(负值舍去),则她实际上升了50米,故答案为:50【答案点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.三、解答题(共7小题,满分69分)18、(1)n=3,见解析;(2)125人;(3)P=【答案解析】
(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.【题目详解】(1)解:(1)n=20-1-3-8-5=3;强化训练前的中位数7+82强化训练后的平均分为120强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)500×5+3(3)(3)画树状图为:共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,所以所抽取的两名同学恰好是一男一女的概率P=1220【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.19、(1)(8,6);(2)y=316【答案解析】
(1)OA=6,即BC=6,代入y=3(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数y=kx+92(k≠0),必经过0,【题目详解】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵点B在直线y=3∴6=3故点B的坐标为(8,6)故答案为(8,6)(2)把点B8,6的坐标代入y=kx+92解得:k=∴y=(3))∵一次函数y=kx+92(k≠0)∴y值为0⩽y⩽∴代入y=kx+9解得-9【答案点睛】本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.20、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【答案解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【题目详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【答案点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.21、+1【答案解析】分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.详解:原式=2﹣2+3﹣2×=2+1﹣=+1.点睛:本题主要考查了实数运算,正确化简各数是解题的关键.22、(1)见解析;(2)证明见解析.【答案解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【题目详解】解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵∴AB=2DH.【答案点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.23、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【答案解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股票交易成功的秘诀:课件教你精准把握买卖时机下载量破万
- 高速公路路面施工案例分析:典型课件讲解
- 2025年拉萨从业资格证模拟考试-货运从业资格证考试
- 武昌首义学院《基础日语上》2023-2024学年第一学期期末试卷
- 南京体育学院《材料加工基础热处理原理》2023-2024学年第二学期期末试卷
- 山西省上党联盟2024-2025学年高三下学期期末质量检查英语试题理试题含解析
- 石家庄人民医学高等专科学校《机场信息系统》2023-2024学年第二学期期末试卷
- 唐山学院《建设工程计量》2023-2024学年第二学期期末试卷
- 上海市浦东新区第一教育署市级名校2025届初三六校第二次联考生物试题试卷含解析
- 金华市浦江县2024-2025学年数学五下期末调研模拟试题含答案
- 养老院查房巡视管理制度
- 按摩店技师免责协议书
- 声音与情绪管理
- 直播中控转正述职报告
- 史宁中:义务教育数学课标(2022年版)解读
- 中华人民共和国统计法
- 机电设备安装与调试技术课件
- 高三小说复习之叙事技巧省公开课获奖课件市赛课比赛一等奖课件
- 基于Simulink+DSP代码生成的永磁电机控制 课件 第1-4章 DSP各模块介绍-永磁同步电机的磁场定向控制技术
- 中国石油吉林职业技能鉴定中心鉴定经管员操作试题
- 军事AI模型优化
评论
0/150
提交评论