衡中同卷2022-2023学年高一数学第一学期期末学业质量监测试题含解析_第1页
衡中同卷2022-2023学年高一数学第一学期期末学业质量监测试题含解析_第2页
衡中同卷2022-2023学年高一数学第一学期期末学业质量监测试题含解析_第3页
衡中同卷2022-2023学年高一数学第一学期期末学业质量监测试题含解析_第4页
衡中同卷2022-2023学年高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.2.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能3.若,则()A B.C. D.4.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.下列函数中,在区间上是增函数是A. B.C. D.6.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.47.设函数的定义域为.则“在上严格递增”是“在上严格递增”的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要8.某市政府为了增加农民收入,决定对该市特色农副产品的科研创新和广开销售渠道加大投入,计划逐年加大研发和宣传资金投入.若该政府2020年全年投人资金120万元,在此基础上,每年投入的资金比上一年增长12%,则该政府全年投入的资金翻一番(2020年的两倍)的年份是(参考数据:lg1.12≈0.05,lg2≈0.30)()A.2027年 B.2026年C.2025年 D.2024年9.在中,为边的中点,则()A. B.C. D.10.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.11.下列不等式中成立的是()A.若,则 B.若,则C.若,则 D.若,则12.若,则与在同一坐标系中的图象大致是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.在下列四个函数中:①,②,③,④.同时具备以下两个性质:(1)对于定义域上任意x,恒有;(2)对于定义域上的任意、,当时,恒有的函数是______(只填序号)14.设函数是定义在上的奇函数,且,则___________15.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.16.已知函数,则______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=为奇函数(1)求a的值;(2)判断函数f(x)的单调性,并加以证明18.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.19.在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量(单位:百万个)与培养时间(单位:小时)的关系为:根据表格中的数据画出散点图如下:为了描述从第小时开始细菌数量随时间变化的关系,现有以下三种模型供选择:①,②,③(1)选出你认为最符合实际的函数模型,并说明理由;(2)利用和这两组数据求出你选择的函数模型的解析式,并预测从第小时开始,至少再经过多少个小时,细菌数量达到百万个20.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.21.2009年某市某地段商业用地价格为每亩60万元,由于土地价格持续上涨,到2021年已经上涨到每亩120万元.现给出两种地价增长方式,其中是按直线上升的地价,是按对数增长的地价,t是2009年以来经过的年数,2009年对应的t值为0(1)求,的解析式;(2)2021年开始,国家出台“稳定土地价格”的相关调控政策,为此,该市要求2025年的地价相对于2021年上涨幅度控制在10%以内,请分析比较以上两种增长方式,确定出最合适的一种模型.(参考数据:)22.已知函数,函数的图像与的图像关于对称.(1)求的值;(2)若函数在上有且仅有一个零点,求实数k取值范围;(3)是否存在实数m,使得函数在上的值域为,若存在,求出实数m的取值范围;若不存在,说明理由.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D2、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则3、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论4、B【解析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【点睛】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.5、A【解析】由题意得函数在上为增函数,函数在上都为减函数.选A6、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.7、A【解析】利用特例法、函数单调性的定义结合充分条件、必要条件的定义判断可得出合适的选项.【详解】若函数在上严格递增,对任意的、且,,由不等式的性质可得,即,所以,在上严格递增,所以,“在上严格递增”“在上严格递增”;若在上严格递增,不妨取,则函数在上严格递增,但函数在上严格递减,所以,“在上严格递增”“在上严格递增”.因此,“在上严格递增”是“在上严格递增”的充分不必要条件.故选:A.8、B【解析】根据题意列出指数方程,取对数,根据对数的运算性质,结合题中所给的数据进行求解即可.【详解】设第n(n∈N*)年该政府全年投入的资金翻一番,依题意得:120(1+12%)n-1=240,则lg[120(1+12%)n-1]=lg240,∴lg120+(n-1)lg1.12=lg240,∴(n-1)lg1.12=lg2,∴,即该政府全年投入的资金翻一番的年份是2026年,故选:B.9、B【解析】由平面向量的三角形法则和数乘向量可得解【详解】由题意,故选:B【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题10、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A11、B【解析】A,如时,,所以该选项错误;BCD,利用作差法比较大小分析得解.【详解】A.若,则错误,如时,,所以该选项错误;B.若,则,所以该选项正确;C.若,则,所以该选项错误;D.若,则,所以该选项错误.故选:B12、D【解析】根据指数函数与对数函数的图象判断【详解】因为,,是减函数,是增函数,只有D满足故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、③④【解析】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.分别判断四个函数的单调性和奇偶性即可.【详解】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.①,f(x)奇函数,在定义域不单调;②,f(x)是偶函数,在定义域R内不单调;③,f(x)是奇函数,且在定义域R上单调递减;④,满足为奇函数,且根据指数函数性质可知其在定义域R上为减函数.综上,满足条件(1)(2)的函数有③④.故答案为:③④.14、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.15、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题16、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)a=-1;(2)函数f(x)在定义域R上单调递增,详见解析【解析】(1)根据定义域为R的奇函数满足f(0)=0即可求得结果;(2)由定义法知,当x1<x2时,f(x1)<f(x2),故可证得结果.【详解】(1)因为函数f(x)是奇函数,且f(x)的定义域为R,所以f(0)==0,所以a=-1,经检验满足题意.(2)f(x)==1-,函数f(x)在定义域R上单调递增理由:设任意的x1,x2,且x1<x2,则f(x1)-f(x2)=.因为x1<x2,所以,所以<0,所以f(x1)<f(x2),所以函数f(x)在定义域R上单调递增【点睛】本题考查指数型复合函数的基本性质,要求学生会根据函数的奇偶性求参数以及利用定义法证明函数的单调性,属基础题.18、(1)(2)【解析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.19、(1),理由见解析;(2),至少再经过小时,细菌数量达到百万个【解析】(1)分析可知,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小.对比三个函数模型可得结论;(2)将所选的两点坐标代入函数解析式,求出参数值,可得出函数模型的解析式,再由,解该不等式即可得出结论.【小问1详解】解:依题意,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小因为函数的定义域为,时无意义;函数随着自变量的增加,函数值的增长速度变大函数可以同时符合上述条件,所以应该选择函数【小问2详解】解:依题意知,解得,所以令,解得所以,至少再经过小时,细菌数量达到百万个20、(1)(2)【解析】(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得:.【点睛】本题主要考查了利用三角函数的图象求解三角函数的解析式及二次函数轴动区间定的最值问题,考查了学生的分类讨论思想及计算能力,属于中档题.21、(1),;,(2)分析比较见解析;应该选择模型【解析】(1)由,求得;由,求得;(2)分别由,,,算出直线和对数增长的增长率与10%比较即可.【小问1详解】解:由题知:,,所以,解得:,所以,;又,,所以,解得:,所以,;【小问2详解】若按照模型,到2025年时,,,直线上升的增长率为,不符合要求;若按照模型,到2025年时,,,对数增长的增长率为,符合要求;综上分析,应该选择模型22、(1)(2)或(3)存在,【解析】(1)由题意,将代入可得答案.(2)由题意即关于x的方程在上有且仅有一个实根,设,作出其函数图像,数形结合可得答案.(3)设记,则函数在上单调递增,根据题意若存在实数m满足条件,则a,b是方程的两个不等正根,由二次方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论