版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题排列(第1课时)教学目标知识与技能:理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列.过程与方法:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点教学难点理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列.掌握排列数公式及推导方法,从中体会“化归”的数学思想.教学过程:学生探究过程:(1)高二(1)班准备从甲,乙,丙三名学生中选出两人分别担任班长和副班长,有多少种不同的结果?(2)从1,2,3三个数字中选出两个数字组成两位数,这样的两位数共有多少个?(3)北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的飞机票?上面三个问题有什么共同特征?可以用怎样的数学模型来刻画?我们把上面问题中被取的对象叫做元素。于是,所提出的问题就是从3个不同的元素a、b、c中任取2个,然后按一定的顺序排成一列,求一共有多少种不同的排列方法。第一问用树形图表示:班长甲乙丙副班长乙丙甲丙甲乙即共有6种不同的结果:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙事实上,这6种选法分别是从甲、乙、丙三个学生中选出两个学生,并按一定的顺序排成一列(班长排在第1位,副班长排在第2位)而得到的。数学建模一般地,从n个不同的元素中取出m(m﹤n)个元素,并按一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列下列问题是排列问题吗?(1)从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?(2)从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?(3)从1到10十个自然数中任取两个组成点的坐标,可得多少个不同的点的坐标?(4)平面上有5个点,任意三点不共线,这五点最多可确定多少条直线?可确定多少条射线?(5)10个学生排队照相,则不同的站法有多少种?排列的定义中包含两个基本内容:一个是“取出元素”;二是“按照一定顺序排列”,“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志。根据排列的定义,两个排列相同,且仅当两个排列的元素完全相同,而且元素的排列顺序也相同.例题讲解例1.写出从a,b,c,d四个元素中任取三个元素的所有排列。2.写出从a,b,c,D这4个字母中,每次取出3个字母的所有排列解:(1)把a,b,c,d中的任意一个字母排在第一个位置上,有4种排法,第一个位置上的字母排好后,第二个位置上的字母就有3种排法。若第一个位置是a,那么第二个位置可以是b,c或d,有3个排列,即ab,ac,ad同理,第一个位置更换为b,c或d,也分别各有3个排列,树形图如下abcdbcdacdabdabc因此,共计有12个不同的排列,它们是ab,ac,ad,ba,bc,bd,ca,cb,cd,da,db,dc(2)略巩固练习:书本第12页1,2,3课外作业:第17页习题1,2,3教学反思:排列的特征:一个是“取出元素”;二是“按照一定顺序排列”,“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志。根据排列的定义,两个排列相同,且仅当两个排列的元素完全相同,而且元素的排列顺序也相同.了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。课题排列(第2课时)教学目标知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点教学难点排列数公式及推导方法,并能运用排列数公式进行计算。能运用所学的排列知识,正确地解决的实际问题.教学过程:学生探究过程:复习排列定义,判断下列问题是否是排列:1、10个人互相通信一次,共写了多少封信?2、10个人互通电话一次,共通话多少次?3、从不号1到10号的十名同学中任取两面三刀名学生去学校参加座谈会,有多少种抽取方法?新课:排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示。第一位第二位‘nn-1第1位第2位第3位第m位……Nn-1n-2n-m+1=n(n-1)(n-2)……(n-m+1)=n(n-1)(n-2)……(n-m+1)……*2*1!!例1:计算变式题:例2:应用公式解以下各题例3、证明巩固练习:求解下列各式的值或解方程课外作业:第17页习题4,5,7教学反思:对于较复杂的问题,一般都有两个方向的列式途径,一个是“正面凑”,一个是“反过来剔”.前者指,按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求的方案剔出去.了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。课题排列(第3课时)教学目标知识与技能:能运用所学的排列知识,正确地解决的实际问题.过程与方法:能运用所学的排列知识,正确地解决的实际问题.情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点教学难点排列数公式.能运用所学的排列知识,正确地解决的实际问题.教学过程:学生探究过程:一般地说,从n个不同元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。排列数从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示。!!例一:某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?例二:①有5本不同的书,从中选出3本给3名同学,每人一本,共有多少种不同的选法?②有5种不同的书,要买3本给3名同学,每人一本,共有多少种不同的选法?例三某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可挂一面,二面,三面,并且不同的顺序表示不同的信号,一共可表示多少种不同的信号?例四用0到9这十个数字,可以组成多少个没有重复数字的三位数?百位十位百位十位个位解法二:对排列方法分类思考。符合条件的三位数可分为两类:0百位十位0百位十位个位百位十位个位百位十位个位 0根据加法原理解法三:间接法巩固练习:2.书本第17页练习1,2,3课外作业:第18页习题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贾生名谊课件
- 2026年灾后重建中的结构设计挑战
- 货运司机安全培训5步课件
- 货车运输安全培训
- 货物打包培训课件
- 心脏重症护理理论与实践探讨
- 2026年成都职业技术学院单招职业技能笔试备考题库带答案解析
- 植入式心脏起搏器进展与应用
- 2026年河南质量工程职业学院单招综合素质笔试模拟试题带答案解析
- 2026年海南体育职业技术学院高职单招职业适应性考试备考题库有答案解析
- 弘扬工匠精神培训课件
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库参考答案详解
- 2025年12月份四川成都市第八人民医院编外招聘9人笔试参考题库及答案解析
- 辽宁省大连市滨城高中联盟2026届高三上学期12月期中Ⅱ考试 数学
- 2026年住院医师规培(超声医学科)试题及答案
- 2025年中职酒店管理(酒店管理基础)试题及答案
- 北京广播电视台招聘笔试题库2026
- 2025江西省中赣投勘察设计有限公司招聘6人笔试重点试题及答案解析
- VESDA课件教学课件
- TCCSAS 060-2025 涉氢建筑物及容器泄爆设计方法
- 达人分销合同范本
评论
0/150
提交评论