




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°2.一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.3.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.724.函数y=1-xA.x>1 B.x<1 C.x≤1 D.x≥15.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()A. B. C. D.6.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.57.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2A.1B.2C.3D.48.如图所示,,结论:①;②;③;④,其中正确的是有()A.1个 B.2个 C.3个 D.4个9.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×101010.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. B.8 C. D.二、填空题(共7小题,每小题3分,满分21分)11.等腰中,是BC边上的高,且,则等腰底角的度数为__________.12.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.13.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.15.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.16.函数y=中,自变量x的取值范围是_____.17.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.三、解答题(共7小题,满分69分)18.(10分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.19.(5分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.20.(8分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?21.(10分)如图,AB是半径为2的⊙O的直径,直线l与AB所在直线垂直,垂足为C,OC=3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点.(1)当∠A=30°时,MN的长是;(2)求证:MC•CN是定值;(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.22.(10分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.23.(12分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以,为两根且二次项系数为6的一个一元二次方程.24.(14分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B2、B【解析】
根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.3、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C.考点:函数自变量的取值范围.5、D【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】由题意可得:,故选D.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6、C【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.7、C【解析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2,1),∴x="-b/2a"="1/2",∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2,1),∴4ac-b24a其中正确的是①②④.故选C8、C【解析】
根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.9、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=1.8×109,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故选D.二、填空题(共7小题,每小题3分,满分21分)11、,,【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【详解】①如图,若点A是顶角顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如图,若点A是底角顶点,且AD在△ABC外部时,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图,若点A是底角顶点,且AD在△ABC内部时,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;综上所述,△ABC底角的度数为45°或15°或75°;故答案为,,.【点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.12、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵点C的坐标为(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.13、4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x﹣4).14、20【解析】
利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15、m≥且m≠1.【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且然后求出两个不等式的公共部分即可.【详解】解:根据题意得m﹣1≠0且解得且m≠1.故答案为:且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16、x≠﹣.【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【详解】解:根据分式有意义的条件得:2x+3≠1解得:故答案为【点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.17、107°【解析】
过C作d∥a,得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.【详解】过C作d∥a,∴a∥b,∴a∥b∥d,∵四边形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案为107°.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2);(3)证明见解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.详解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(负值舍去),∴BC=2a=;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.19、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.20、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.【解析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;(2)解不等式求出x的范围,根据一次函数的性质计算即可.【详解】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.【点睛】本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.21、(1);(2)MC•NC=5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.【解析】
(1)由题意得AO=OB=2、OC=3、AC=5、BC=1,根据MC=ACtan∠A=、CN=可得答案;(2)证△ACM∽△NCB得,由此即可求得答案;(3)设MC=a、NC=b,由(2)知ab=5,由P是圆上异于A、B的动点知a>0,可得b=(a>0),根据反比例函数的性质得a+b不存在最大值,当a=b时,a+b最小,据此求解可得;(4)设该圆与AC的交点为D,连接DM、DN,证△MDC∽△DNC得,即MC•NC=DC2=5,即DC=,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为.【详解】(1)如图所示,根据题意知,AO=OB=2、OC=3,则AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直线l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,则MN=MC+CN=+=,故答案为:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC•NC=AC•BC=5×1=5;(3)设MC=a、NC=b,由(2)知ab=5,∵P是圆上异于A、B的动点,∴a>0,∴b=(a>0),根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,由a=b得a=,解之得a=(负值舍去),此时b=,此时a+b的最小值为2;(4)如图,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴,即MC•NC=DC2,由(2)知MC•NC=5,∴DC2=5,∴DC=,∴以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.22、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】
利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.23、(1)D、E、F三点是同在一条直线上.(2)6x2﹣13x+6=1.【解析】(1)利用切线长定理及梅氏定理即可求证;(2)利用相似和韦达定理即可求解.解:(1)结论:D、E、F三点是同在一条直线上.证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,再由切线长定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅劳斯定理的逆定理可证,D、E、F三点共线,即D、E、F三点共线.(2)∵AB=AC=5,BC=6,∴A、E、I三点共线,CE=BE=3,AE=4,连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- C语言最佳实践试题及答案
- 2025年JAVA考试关注的前沿技术试题及答案
- 计算机四级考试常见问题解答试题及答案
- C语言学习的常见误区与解决办法试题及答案
- 优化软件质量的测试策略发展试题及答案
- 高效备考2025年Msoffice试题及答案汇编
- C语言结构体相关试题及答案
- 医疗产品供货合同协议书
- 计算机科学中的图论应用试题及答案
- 工程拆除合同协议书怎么写
- 2025年下半年太原市招考社区专职社工人员易考易错模拟试题(共500题)试卷后附参考答案
- 2025年财务会计师入职考试试题及答案
- 云南2025年云南省社会科学院中国(昆明)南亚东南亚研究院招聘笔试历年参考题库附带答案详解
- 健康教育在护理工作中的意义
- 2025年5月12日陕西省公务员面试真题及答案解析
- 2025-2030中国海上风电行业市场深度调研及投资策略与投资前景研究报告
- 5G共享网络的无缝连接与边缘计算协同发展-洞察阐释
- 2025-2030中国活塞杆行业市场发展趋势与前景展望战略研究报告
- 2025形势与政策课件-加快建设社会主义文化强国
- 健康理疗室管理制度
- 燃气行业数字化转型趋势分析-全面剖析
评论
0/150
提交评论