




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣ B.π+ C.π+2 D.2π﹣22.若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.3.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.4.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.195.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125° B.135° C.145° D.155°6.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.7.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA=;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①② B.①②③ C.①③④ D.①②④8.计算-4-|-3|的结果是()A.-1B.-5C.1D.59.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.33 B.32 C.10.已知点,与点关于轴对称的点的坐标是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.12.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.13.分解因式:2x2﹣8=_____________14.计算:6﹣=_____15.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.16.计算:﹣|﹣2|+()﹣1=_____.三、解答题(共8题,共72分)17.(8分)如图,中,,于,,为边上一点.(1)当时,直接写出,.(2)如图1,当,时,连并延长交延长线于,求证:.(3)如图2,连交于,当且时,求的值.18.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|19.(8分)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.20.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.21.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.22.(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.23.(12分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.24.已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:观察图形可知,阴影部分的面积=S半圆ACD+S半圆BCD-S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴阴影部分的面积=S半圆ACD+S半圆BCD-S△ABC==.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积=S半圆ACD+S半圆BCD-S△ABC是解答本题的关键.2、A【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.3、D【解析】
根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.5、A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.6、B【解析】∵①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:.故选:B.7、D【解析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.详解:在Rt△ABC中,∵∴①若C.O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∴当OC经过点E时,OC最大,则C.O两点距离的最大值为4;所以②正确;③如图2,当时,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的则:所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.8、B【解析】
原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【详解】原式=-2-3=-5,故选:B.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9、D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC=3考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.10、C【解析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点,与点关于轴对称的点的坐标是,
故选:C.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题解析:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=1.12、【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故答案为(﹣,).【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.13、2(x+2)(x﹣2)【解析】
先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.14、3【解析】
按照二次根式的运算法则进行运算即可.【详解】【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.15、1:2【解析】
△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.16、﹣1【解析】
根据立方根、绝对值及负整数指数幂等知识点解答即可.【详解】原式=-2-2+3=-1【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.三、解答题(共8题,共72分)17、(1),;(2)证明见解析;(3).【解析】
(1)利用相似三角形的判定可得,列出比例式即可求出结论;(2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作于,根据相似三角形的判定可得,列出比例式可得,设,,,即可求出x的值,根据平行线分线段成比例定理求出,设,,,然后根据勾股定理求出AC,即可得出结论.【详解】(1)如图1中,当时,.,,,,,,.故答案为:,.(2)如图中,作交于.,,∴tan∠B=,tan∠ACE=tan∠B=∴BE=2CE,,,设,则,,,,,,,.(3)如图2中,作于.,,,,,,,,,,,设,,,则有,解得或(舍弃),,,,,,,,,,,设,,,在中,,,,,.【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.18、-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×+-1=-4点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.19、今年妹妹6岁,哥哥10岁.【解析】
试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得:解得:.答:今年妹妹6岁,哥哥10岁.考点:二元一次方程组的应用.20、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)P(偶数)故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1);(2).【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.22、(1)k=2;(2)点D经过的路径长为.【解析】
(1)根据题意求得点B的坐标,再代入求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴点B坐标为(,),代入得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即点D经过的路径长为.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.23、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信配件采购合同范本
- 原木杨木购销合同范本
- 2025年吉水县县直事业单位公开选调工作人员【14人】备考练习题库及答案解析
- 吉水县吉湖物业服务有限公司2025年面向社会公开招聘物业项目管理员、消防管理员备考练习试题及答案解析
- 维修安全协议合同范本
- 2025江西宜春樟树市选聘医疗保障基金社会监督员20人备考练习题库及答案解析
- 2025年甘肃省兰州市皋兰县支持未就业普通高校毕业生到基层就业项目情况表(36人)备考练习题库及答案解析
- 法务处理合同范本
- 夫妻之间赠与合同范本
- 2025年传染病学病毒性肝炎预防知识测验答案及解析
- 工程缺陷责任期终止证书版本
- GB/T 45356-2025无压埋地排污、排水用聚丙烯(PP)管道系统
- 石墨产品的国际市场推广策略
- ktv店长合同范本
- 科技辅导员培训课件
- 小学生爱国主义教育工作计划
- 电子政务教程(第三版)课件全套 赵国俊 第1-12章 电子政务概要-中国电子政务的发展基础
- 乡镇卫生院医用耗材监管制度
- 语言学概论-第三章-语义
- 2024-2025学年广东省深圳实验学校初中部九年级上学期开学考英语试题及答案
- 健康与社会照护第三届全省职业技能大赛健康与社会照护项目技术文件
评论
0/150
提交评论