




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五讲TransportationandNetworkModels第五讲1IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionSeveralspecificm2IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).
IntroductionTRANSPORTATIONMOD3TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample4DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy
900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp
700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N5GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)400Nancy(2)900andDemand:GraphicalpresentationofLeHa6TransportationModelAutoPowermustdecidehowmanymotorstosendfromeachharbor(supply)toeachplant(demand).Thecost($,onapermotorbasis)ofshippingisgivenbelow.
TODESTINATION
LeipzigNancyLiegeTilburgFROMORIGIN
(1)(2)(3)(4)
(A)Amsterdam 1201304159.50(B)Antwerp
6140100110(C)LeHavre102.509012242TransportationModelAutoPower7Thegoalistominimizetotaltransportationcost.Sincethecostsintheprevioustableareonaperunitbasis,wecancalculatetotalcostbasedonthefollowingmatrix(wherexijrepresentsthenumberofunitsthatwillbetransportedfromOriginitoDestinationj):TransportationModelThegoalistominimizetotal8
TODESTINATIONFROMORIGIN
1234
A 120xA1130xA241xA359.50xA4
B 61xB140xB2100xB3110xB4C102.50xC190xC2122xC342xC4TotalTransportationCost=
120xA1+130xA2+41xA3+…+122xC3+42xC4TransportationModel TODESTINATIONTota9Twogeneraltypesofconstraints.1.
Thenumberofitemsshippedfromaharbor
cannotexceedthenumberofitemsavailable.ForAmsterdam:xA1+xA2+xA3+xA4
<500ForAntwerp:
xB1+xB2+xB3+xB4
<700ForLeHavre:xC1+xC2+xC3+xC4
<800Note:Wecouldhaveusedan“=“insteadof“<“sincesupplyanddemandarebalancedforthismodel.TransportationModelTwogeneraltypesofconstrain102.
Demandateachplantmustbesatisfied.ForLeipzig:xA1+xB1+xC1
>400ForNancy:
xA2+xB2+xC2
>900ForLiege:xA3+xB3+xC3>200Note:Wecouldhaveusedan“=“insteadof“>“sincesupplyanddemandarebalancedforthismodel.ForTilburg:xA4+xB4+xC4>500TransportationModelTwogeneraltypesofconstraints.2.Demandateachplantmust11VariationsontheTransportationModelSupposewenowwanttomaximizethevalueoftheobjectivefunctioninsteadofminimizingit.Inthiscase,wewouldusethesamemodel,butnowtheobjectivefunctioncoefficientsdefinethecontributionmargins(i.e.,unitreturns)insteadofunitcosts.SolvingMaxTransportationModelsVariationsontheTransportati12Whensupplyanddemandarenotequal,thentheproblemisunbalanced.Therearetwosituations:Whensupplyisgreaterthandemand:WhenSupplyandDemandDifferInthiscase,whenalldemandissatisfied,theremainingsupplythatwasnotallocatedateachoriginwouldappearasslackinthesupplyconstraintforthatorigin.Usinginequalitiesintheconstraints(asinthepreviousexample)wouldnotcauseanyproblems.VariationsontheTransportationModelWhensupplyanddemandarenot13Inthiscase,theLPmodelhasnofeasiblesolution.However,therearetwoapproachestosolvingthisproblem:1.
Rewritethesupplyconstraintstobe
equalitiesandrewritethedemand
constraintstobe<.Unfulfilleddemandwillappearasslackoneachofthedemandconstraintswhenoneoptimizesthemodel.Whendemandisgreaterthansupply:VariationsontheTransportationModelInthiscase,theLPmodelhas142.
Revisethemodeltoappendaplaceholder
origin,calledadummyorigin,withsupply
equaltothedifferencebetweentotal
demandandtotalsupply.Thepurposeofthedummyoriginistomaketheproblembalanced(totalsupply=totaldemand)sothatonecansolveit.Thecostofsupplyinganydestinationfromthisoriginiszero.Oncesolved,anysupplyallocatedfromthisorigintoadestinationisinterpretedasunfilleddemand.VariationsontheTransportationModel2.Revisethemodeltoappend15Certainroutesinatransportationmodelmaybeunacceptableduetoregionalrestrictions,deliverytime,etc.Inthiscase,youcanassignanarbitrarilylargeunitcostnumber(identifiedasM)tothatroute.Thiswillforceonetoeliminatetheuseofthatroutesincethecostofusingitwouldbemuchlargerthanthatofanyotherfeasiblealternative.EliminatingUnacceptableRoutesChooseMsuchthatitwillbelargerthananyotherunitcostnumberinthemodel.VariationsontheTransportationModelCertainroutesinatransporta16Generally,LPmodelsdonotproduceintegersolutions.TheexceptiontothisistheTransportationmodel.Ingeneral:IntegerValuedSolutionsIfallofthesuppliesanddemandsinatransportationmodelhaveintegervalues,theoptimalvaluesofthedecisionvariableswillalsohaveintegervalues.VariationsontheTransportationModelGenerally,LPmodelsdonotpr17AssignmentModelIngeneral,theAssignmentmodelistheproblemofdeterminingtheoptimalassignmentofn“indivisible”agentsorobjectstontasks.Forexample,youmightwanttoassignSalespeopletosalesterritoriesComputerstonetworksConsultantstoclientsServicerepresentativestoservicecallsCommercialartiststoadvertisingcopyTheimportantconstraintisthateachpersonormachinebeassignedtooneandonlyonetask.AssignmentModelIngeneral,th18WewillusetheAutoPowerexampletoillustrateAssignmentproblems.AutoPowerEurope’sAuditingProblemAutoPower’sEuropeanheadquartersisinBrussels.Thisyear,eachofthefourcorporatevice-presidentswillvisitandauditoneoftheassemblyplantsinJune.Theplantsarelocatedin:Leipzig,GermanyLiege,BelgiumNancy,FranceTilburg,theNetherlandsAssignmentModelWewillusetheAutoPowerexam19Theissuestoconsiderinassigningthedifferentvice-presidentstotheplantsare:1.
Matchingthevice-presidents’areasof
expertisewiththeimportanceofspecific
problemareasinaplant.2.
Thetimethemanagementauditwillrequire
andtheotherdemandsoneachvice-
presidentduringthetwo-weekinterval.3.
Matchingthelanguageabilityofavice-
presidentwiththeplant’sdominantlanguage.Keepingtheseissuesinmind,firstestimatethe(opportunity)costtoAutoPowerofsendingeachvice-presidenttoeachplant.AssignmentModelTheissuestoconsiderinassi20Thefollowingtableliststheassignmentcostsin$000sforeveryvice-president/plantcombination.
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413AssignmentModelThefollowingtableliststhe21
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413Considerthefollowingassignment:Totalcost=24+22+20+13=79Thequestionis,isthistheleastcostassignment?AssignmentModel PLANTConsi22Completeenumerationisthecalculationofthetotalcostofeachfeasibleassignmentpatterninordertopicktheassignmentwiththelowesttotalcost.SolvingbyCompleteEnumerationThisisnotaproblemwhenthereareonlyafewrowsandcolumns(e.g.,vice-presidentsandplants).However,completeenumerationcanquicklybecomeburdensomeasthemodelgrowslarge.AssignmentModelCompleteenumerationistheca231.
Fcanbeassignedtoanyofthe4plants.2.
OnceFisassigned,Mcanbeassignedtoany
oftheremaining3plants.3.
NowOcanbeassignedtoanyofthe
remaining2plants.4.
Pmustbeassignedtotheonlyremaining
plant.Thereare4x3x2x1=24possiblesolutions.Ingeneral,iftherearenrowsandncolumns,thentherewouldben(n-1)(n-2)(n-3)…(2)(1)=n!
(nfactorial)solutions.Asnincreases,n!increasesrapidly.Therefore,thismaynotbethebestmethod.AssignmentModel1.Fcanbeassignedtoanyo24Forthismodel,let
xij=numberofV.P’softypeiassignedtoplantjwherei=F,M,O,P
j=1,2,3,4TheLPFormulationandSolutionNoticethatthismodelisbalancedsincethetotalnumberofV.P.’sisequaltothetotalnumberofplants.Remember,onlyoneV.P.(supply)isneededateachplant(demand).AssignmentModelForthismodel,let
xij=num25Asaresult,theoptimalassignmentis:
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413TotalCost($000’s)=10+10+15+13=48AssignmentModelAsaresult,theoptimalassig26TheAssignmentmodelissimilartotheTransportationmodelwiththeexceptionthatsupplycannotbedistributedtomorethanonedestination.RelationtotheTransportationModelIntheAssignmentmodel,allsuppliesanddemandsareone,andhenceintegers.Asaresult,eachdecisionvariablecellwilleithercontaina0(noassignment)ora1(assignmentmade).Ingeneral,theassignmentmodelcanbeformulatedasatransportationmodelinwhichthesupplyateachoriginandthedemandateachdestination=1.AssignmentModelTheAssignmentmodelissimila27Case1:SupplyExceedsDemandUnequalSupplyandDemand:Intheexample,supposethecompanyPresidentdecidesnottoaudittheplantinTilburg.Nowthereare4V.P.’stoassignto3plants.Hereisthecost(in$000s)matrixforthisscenario:
PLANT NUMBEROFV.P.sV.P. 1 2 3 AVAILABLE
F 24 10 21 1
M 14 22 10 1
O 15 17 20 1
P 11 19 14 1No.ofV.P.s 4Required 1 1 1 3
AssignmentModelCase1:SupplyExceedsDemand28Toformulatethismodel,simplydroptheconstraintthatrequiredaV.P.atplant4andsolveit.AssignmentModelUnequalSupplyandDemand:Toformulatethismodel,simpl29Case2:DemandExceedsSupplyUnequalSupplyandDemand:Inthisexample,assumethattheV.P.ofPersonnelisunabletoparticipateintheEuropeanaudit.Nowthecostmatrixisasfollows:
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1No.ofV.P.s 3Required 1 1 1 1 4
AssignmentModelCase2:DemandExceedsSupply30
1.Modifytheinequalitiesintheconstraints
(similartotheTransportationexample)
2.AddadummyV.P.asaplaceholdertothe
costmatrix(shownbelow).
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1Dummy 0 0 0 0 1No.ofV.P.s 4Required 1 1 1 1 4
ZerocosttoassignthedummyDummysupply;nowsupply=demandAssignmentModel 1.Modifytheinequalitiesi31Inthesolution,thedummyV.P.wouldbeassignedtoaplant.Inreality,thisplantwouldnotbeaudited.AssignmentModelUnequalSupplyandDemand:Inthesolution,thedummyV.P32InthisAssignmentmodel,theresponsefromeachassignmentisaprofitratherthanacost.MaximizationModelsForexample,AutoPowermustnowassignfournewsalespeopletothreeterritoriesinordertomaximizeprofit.Theeffectofassigninganysalespersontoaterritoryismeasuredbytheanticipatedmarginalincreaseinprofitcontributionduetotheassignment.AssignmentModelInthisAssignmentmodel,the33Hereistheprofitmatrixforthismodel.
NUMBEROF TERRITORY SALESPEOPLE SALESPERSON 1 2 3AVAILABLE
A 40 30 20 1
B 18 28 22 1
C 12 16 20 1
D 25 24 27 1No.of 4
Salespeople 1 1 1 3
Required
ThisvaluerepresentstheprofitcontributionifAisassignedtoTerritory3.AssignmentModelHereistheprofitmatrixfor34TheAssignmentModelCertainassignmentsinthemodelmaybeunacceptableforvariousreasons.SituationswithUnacceptableAssignmentsInthiscase,youcanassignanarbitrarilylargeunitcost(orsmallunitprofit)numbertothatassignment.ThiswillforceSolvertoeliminatetheuseofthatassignmentsince,forexample,thecostofmakingthatassignmentwouldbemuchlargerthanthatofanyotherfeasiblealternative.AssignmentModelTheAssignmentModelCertainas35NetworkModelsTransportationandassignmentmodelsaremembersofamoregeneralclassofmodelscallednetworkmodels.Networkmodelsinvolvefrom-tosourcesanddestinations.Appliedtomanagementlogisticsanddistribution,networkmodelsareimportantbecause:Theycanbeappliedtoawidevarietyofrealworldmodels.Flowsmayrepresentphysicalquantities,Internetdatapackets,cash,airplanes,cars,ships,products,…NetworkModelsTransportationa36ZigwellInc.isAutoPower’slargestUSdistributorofUPSgeneratorsinfiveMidwesternstates.NetworkModelsACapacitatedTransshipmentModelZigwellhas10BigGen’satsite1Thesegeneratorsmustbedeliveredtoconstructionsitesintwocitiesdenotedand343BigGen’sarerequiredatsiteand7arerequiredatsite34NetworkModelsZigwellInc.isAutoPower’sla371+102543-3-7Thisisanetworkdiagramornetworkflowdiagram.Eacharrowiscalledanarcorbranch.
Eachsiteistermedanode.SupplyDemandNetworkModels1+102543-3-7Thisisanetwork38cij thecosts(perunit)oftraversingthe
routesuij thecapacitiesalongtheroutesCostsareprimarilyduetofuel,tolls,andthecostofthedriverfortheaveragetimeittakestotraversethearc.Becauseofpre-establishedagreementswiththeteamsters,Zigwellmustchangedriversateachsiteitencountersonaroute.Becauseoflimitationsonthecurrentavailabilityofdrivers,thereisanupperbound,uij,onthenumberofgeneratorsthatmaytraverseanarc.NetworkModelscij thecosts(perunit)oftr391+102543-3-7c12c23c24c25c34c43c53u12u23u24u25u34u43u53NetworkModels1+102543-3-7c12c23c24c25c34c4340LPFormulationoftheModelNetworkModelsACapacitatedTransshipmentModelThegoalistofindashipmentplanthatsatisfiesthedemandsatminimumcost,subjecttothecapacityconstraints.Thecapacitatedtransshipmentmodelisbasicallyidenticaltothetransportationmodelexceptthat:1.
Anyplantorwarehousecanshiptoanyother
plantorwarehouse2.
Therecanbeupperand/orlowerbounds
(capacities)oneachshipment(branch)NetworkModelsLPFormulationoftheModelNet41Thedecisionvariablesare:xij=totalnumberofBigGen’ssentonarc(i,j)=flowfromnodeitonodejThemodelbecomes:Minc12x12+c23x23+c24x24+c25x25+c34x34+
c43x43+c53x53+c54x54s.t.+x12=10-x12+x23+x24+x25=0-x23–x43–x53+x34=-3-x24+x43–x34–x54=-7-x25+x53+x54=00<
xij<uijallarcs(i,j)inthenetworkThedecisionvariablesare:xij42PropertiesoftheModel1.
xijisassociatedwitheachofthe8arcsinthe
network.Therefore,thereare8corresponding
variables:x12,x23,x24,x25,x34,x43,x53,andx54Theobjectiveistominimizetotalcost.2.
Thereisonematerialflowbalanceequation
associatedwitheachnodeinthenetwork.For
example:Totalflowoutofnodeis10units1Totalflowoutofnodeminusthetotalflowintonodeiszero(i.e.,totalflowoutmustequaltotalflowintonode).222Totalflowoutofnodemustbe3unitslessthanthetotalflowintonode.33PropertiesoftheModel1.xij43Intermediatenodesthatareneithersupplypointsnordemandpointsareoftentermedtransshipmentnodes.3.
Thepositiveright-handsidescorrespondto
nodesthatarenetsuppliers(origins).Thesumofallright-hand-sidetermsiszero(i.e.,totalsupplyinthenetworkequalstotaldemand).Thezeroright-handsidescorrespondtonodesthathaveneithersupplynordemand.Thenegativeright-handsidescorrespondtonodesthatarenetdestinations.Intermediatenodesthatarene44Ingeneral,flowbalanceforagivennode,j,is:Totalflowoutofnodej–totalflowintonodej=supplyatnodejNegativesupplyisarequirement.Nodeswithnegativesupplyarecalleddestinations,
sinks,
or
demandpoints.Nodeswithpositivesupplyarecalledorigins,sources,orsupplypoints.Nodeswithzerosupplyarecalledtransshipmentpoints.4.
AsmallmodelcanbeoptimizedwithSolver.Ingeneral,flowbalancefora45IntegerOptimalSolutionsNetworkModelsACapacitatedTransshipmentModelTheintegerpropertyofthenetworkmodelcanbestatedthus:IfalltheRHStermsandarccapacities,uij,areintegersinthecapacitatedtransshipmentmodel,therewillalwaysbeaninteger-valuedoptimalsolutiontothismodel.NetworkModelsIntegerOptimalSolutionsNetwo46ThestructureofthismodelmakesitpossibletoapplyspecialsolutionmethodsandsoftwarethatoptimizethemodelmuchmorequicklythanthemoregeneralsimplexmethodusedbySolver.EfficientSolutionProceduresNetworkModelsACapacitatedTransshipmentModelThismakesitpossibletooptimizeverylargescalenetworkmodelsquicklyandcheaply.NetworkModelsThestructureofthismodelma47Theshortest-routemodelreferstoanetworkforwhicheacharc(i,j)hasanassociatednumber,cij,whichisinterpretedasthedistance(orcost,ortime)fromnodeitonodej.NetworkModelsAShortest-RouteModelArouteorpathbetweentwonodesisanysequenceofarcsconnectingthetwonodes.Theobjectiveistofindtheshortest(orleast-costorleast-time)routesfromaspecificnodetoeachoftheothernodesinthenetwork.NetworkModelsTheshortest-routemodelrefer48Inthisexample,AaronDrunnermakesfrequentwinedeliveriesto7differentsites:874H12347651611213323Notethatthearcsareundirected(flowispermittedineitherdirection).Distancebetweennodes.HomeBaseInthisexample,AaronDrunner49Thegoalistominimizeoverallcostsbymakingsurethatanyfuturedeliverytoanygivensiteismadealongtheshortestroutetothatsite.ThegoalistominimizeoverallcostsbyfindingtheshortestroutefromnodeHtoanyoftheother7nodes.Notethatinthismodel,thetaskistofindanoptimalroute,notoptimalxij’s.NetworkModelsThegoalistominimizeoveral50Inthisexample,MichaelCarrisresponsibleforobtainingahighspeedprintingpressforhisnewspapercompany.NetworkModelsAnEquipmentReplacementModelInagivenyearhemustchoosebetweenpurchasing:NewPrintingPressOldPrintingPresshighannual
acquisitioncostlowinitial
maintenancecostnoannual
acquisitioncosthighinitial
maintenancecostNetworkModelsInthisexample,MichaelCarr51Assumea4-yeartimehorizon.Let:cijdenotethecostofbuyingnewequipment
atthebeginningofyeari,i=1,2,3,4
andmaintainingittothebeginningofyear
j,j=2,3,4,5Threealternativefeasiblepoliciesare:1.
Buyingnewequipmentatthebeginningof
eachyear.Total(acquisition+maintenance)cost=
c12+c23+c34+c452.
Buynewequipmentonlyatthebeginningof
year1andmaintainitthroughallsuccessive
years.Total(buying+maintenance)cost=c15Assumea4-yeartimehorizon.523.
Buynewequipmentatthebeginningofyears
1and4.Totalcost=c14+c45Thesolutiontothismodelisobtainedbyfindingtheshortest(i.e.,minimumcost)routefromnode1tonode5ofthenetwork.Eachnodeontheshortestroutedenotesareplacement,thatis,ayearatwhichnewequipmentshouldbebought.3.Buynewequipmentattheb53Hereisthenetworkmodelforthisproblem.Assumethefollowingcosts:$1,600,000purchasecost$500,000maintenancecostinpurchaseyear$1,000,000,$1,500,000,and$2,200,000foreachadditionalyeartheequipmentiskept12345c12c23c34c45c13c14c15c24c25c35Hereisthenetworkmodelfor54Inthemaximal-flowmodel,thereisasinglesourcenode(theinputnode)andasinglesinknode(theoutputnode).NetworkModelsAMaximalFlowModelThegoalistofindthemaximumamountoftotalflowthatcanberoutedthroughaphysicalnetwork(fromsourcetosink)inaunitoftime.Theamountofflowperunittimeoneacharcislimitedbycapacityrestrictions.Theonlyrequirementisthatforeachnode(otherthanthesourceorthesink):flowoutofthenode=flowintothenodeNetworkModelsInthemaximal-flowmodel,the55TheUDPC(UrbanDevelopmentPlanningCommission)isanadhocspecialintereststudygroup.AnApplicationofMaximal-Flow:
TheUrbanDevelopmentPlanningCommissionNetworkModelsAMaximalFlowModelThegroup’scurrentresponsibilityistocoordinatetheconstructionofthenewsubwaysystemwiththestate’shighwaymaintenancedepartment.Becausethenewsubwaysystemisbeingbuiltnearthecity’sbeltway,theeastboundtrafficonthebeltwaymustbedetoured.NetworkModelsTheUDPC(UrbanDevelopmentPl56Theproposednetworkofalternativeroutesandthedifferentspeedlimitsandtrafficpatterns(producingdifferentflowcapacities)aregivenbelow:154326406003402060016002DetourBeginsDetourEndsIndicatesacapacityof6000vehiclesperhourinthedirectionofthearrow.Indicates0capacityinthedirectionofthearrow.Theproposednetworkofaltern57TranslatingtheExcelsolutiontotheoriginalnetworkdiagramgivesthefollowingtrafficpattern:154326442266288TranslatingtheExcelsolution58第五讲TransportationandNetworkModels第五讲59IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionSeveralspecificm60IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).
IntroductionTRANSPORTATIONMOD61TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample62DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy
900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp
700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N63GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿物颜料制备与色彩调控考核试卷
- 竹材加工的智能化生产线设计考核试卷
- 缫丝工艺中的产品质量控制要点考试考核试卷
- 2025电视剧演员聘用合同范本(经纪公司版)
- 2025租房合同官方范本
- 2025民事法律事务代理合同
- 2025果蔬行业劳动合同
- 2025年租赁合同未登记记录是否有效
- 二零二五版货物运输类采购合同书
- 二零二五版施工合同书的消防条款
- 境外道路货物运输应急预案
- 初中生物总复习 人体
- GB/T 9438-2013铝合金铸件
- GB/T 8627-2007建筑材料燃烧或分解的烟密度试验方法
- GB/T 4857.4-2008包装运输包装件基本试验第4部分:采用压力试验机进行的抗压和堆码试验方法
- 二极管整流滤波电路课件
- JC01基础心理学单科作业题汇总(含解析)
- 中考英语读写综合练习
- 混凝土供应保证方案 2
- 慢性阻塞性肺疾病入院记录模板-病历书写
- 新疆维吾尔自治区和田地区各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
评论
0/150
提交评论