版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1命题及其关系1.1.1命题1.1命题及其关系1.1.1命题1学好要领不能不能能下列句子中,你能判断它们的真假吗?⑴若直线a∥b,则直线a和直线b无公共点⑵2+4=7;⑶垂直于同一条直线的两个平面平行;⑷3能被2整除;⑸请借我一枝钢笔;⑹画一个角等于已知角;⑺若a2=b2,则a=b.是否作出判断能能能能学好要领不能不能能下列句子中,你能判断它们的真假吗?是否作出2判断为真的语句叫做真命题判断为假的语句叫做假命题
理解:1)命题定义的核心是判断,切记:判断的标准必须确定,判断的结果可真可假,但真假必居其一。判断为真的语句叫做真命题3今天天气如何?你是不是作业没交?这里景色多美啊!-2不是整数。4>3。x>4。看看下列语句是不是命题?不是(疑问句)不是(疑问句)不是(感叹句)是(否定陈述句)是(肯定陈述句)不是(开语句)今天天气如何?看看下列语句是不是命题?不是(疑问句)4例1.判断下列语句是不是命题?是真命题还是假命题判断一个语句是不是命题,关键看这语句是否符合:空集是任何集合的子集若整数a是素数,则a是奇数.指数函数是增函数吗?若空间中两条直线不相交,则这两条直线平行.
X>15疑问句不能判断真假开语句不能判断真假真命题假命题假命题语句是否是陈述句是否可以判断真假。真命题例1.判断下列语句是不是命题?是真命题还是假命题判断一个语句5教材P4练习2判断下列命题的真假1)能被6整除的整数一定能被3整除。2)若四边形四条边都相等,则这个四边形是正方形3)二次函数的图像是一条抛物线。4)两个内角等于45°的三角形是等腰三角形真命题假命题真命题真命题教材P4练习2判断下列命题的真假真命题假命题真命题真命题6“若p则q”形式的命题命题“若整数a是素数,则a是奇数。”具有“若p则q”的形式。p通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。“若p则q”形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q”“只要p,就有q”等形式。“若p则q”形式的命题的优点是条件与结论容易辨别.q“若p则q”形式的命题命题“若整数a7例2指出下列命题中的条件p和结论q:若整数n能被2整除,则n是偶数;若四边形是菱形,则它的对角线互相垂直且平分。解:1)条件p:
结论q:2)条件p:
结论q:整数n能被2整除整数n是偶数四边形是菱形四边形的对角线互相垂直且平分例2指出下列命题中的条件p和结论q:若整数n能被2整除,8例3.把下列命题改写成“若p则q”的形式,并判断真假(1)垂直于同一个直线的两条直线平行(2)负数的平方是负数.(3)对顶角相等假命题真命题真命题例3.把下列命题改写成“若p则q”的形式,并判断真假(1)垂91.1.2四种命题及其关系1.1.2四种命题及其关系10下列命题中②,③,④与命题①有何关系?①如果两个三角形全等,那么它们的面积相等;②如果两个三角形的面积相等,那么它们全等;③如果两个三角形不全等,那么它们的面积不相等;④如果两个三角形的面积不相等,那么它们不全等;下列命题中②,③,④与命题①有何关系?11可以发现命题①与②的像这样,一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题,其中一个命题叫原命题,另一个叫做原命题的逆命题。
条件与结论互换了观察命题①与命题②的条件和结论之间分别有什么关系?①如果两个三角形全等,那么它们的面积相等;②如果两个三角形的面积相等,那么它们全等;可以发现命题①与②的像这样,一般地,对于两个命题,如果一个命12若原命题为:若p,则q则它的逆命题为:若q,则p例:将命题“若a=0,则ab=0”的条件和结论互换,得到它的逆命题逆命题若ab=0,则a=0若原命题为:若p,则q例:将命题“若a=0,则ab=0”的条13可以发现③的条件和结论恰好是①的
像这样,一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题,其中一个叫原命题,另一个叫原命题的否命题.①如果两个三角形全等,那么它们的面积相等;③如果两个三角形不全等,那么它们的面积不相等;观察命题①与命题③的条件和结论之间分别有什么关系?条件和结论的否定可以发现③的条件和结论恰好是①的像这样,一个14因此若原命题为“若p,则q”,则否命题为:若p,则q”否命题例如:若a=0,则ab=0否命题为:若a≠0,则ab≠0.一般地,把条件p,结论q的否定分别记作“p,q”,读作“非p”、“非q”.因此若原命题为“若p,则q”,否命题例如:若a=0,则ab=15④的条件恰好是①的④的结论恰好是①的
像这样的两个命题叫做互为逆否命题,其中一个叫原命题,另一个叫原命题的逆否命题。①如果两个三角形全等,那么它们的面积相等;④如果两个三角形的面积不相等,那么它们不全等;观察命题①与命题④的条件和结论之间分别有什么关系?结论的否定,条件的否定.我们发现④的条件恰好是①的像这样的两个命题叫做互为逆否命题,16即若原命题为:“若p,则q”,则它的逆否命题为“若q,则p”如“若a=0,则ab=0”的逆否命题为:若ab≠0,则a≠0.逆否命题即若原命题为:“若p,则q”,如“若a=0,则ab=0”的逆17原命题:若p则q;逆命题:若q则p;否命题:若┐p则┐q;逆否命题:若┐q则┐p四种命题的形式:原命题:若p则q;四种命题的形式:18准确地写出否定形式是非常重要的,下面是一些常见的结论的否定形式.
正面词语等于大于小于是都是否定不等于不大于不小于不是不都是正面词语全至少有一个能P或qP且q否定不全一个也没有不能非p且非q非p或非q准确地写出否定形式是非常重要的,下面是一些常见的结论的否定形19例1.写出下列命题的逆命题、否命题与逆否命题并判断真假(2)原命题:若两条直线平行,则同位角相等逆命题:若同位角相等,则两条直线平行否命题:若两条直线不平行,则同位角不相等逆否命题:若同位角不相等,则两条直线不平行假真真假真真真真例1.写出下列命题的逆命题、否命题与逆否命题并判断真假(2)20假假假假(3)原命题:若a=0,ab=0逆命题:若ab=0,则a=0真假假真否命题:逆否命题:假假假假(3)原命题:若a=0,ab=0逆命题:若ab=0,21由上可得四种命题之间的关系:原命题(若p,则q)否命题(若非p,则非q)逆否命题(若非q,则非p)逆命题(若q,则p)互逆互逆互否互否互为逆否四种命题的关系由上可得四种命题之间的关系:原命题(若p,否命题(若逆否命题22原命题逆命题否命题逆否命题真真真真真真真真假假假假假假假假四种命题的真假3.原命题为真,它的逆否命题一定为真.1.原命题为真,它的逆命题不一定为真.2.原命题为真,它的否命题不一定为真.原命题逆命题否命题逆否命题真真真真真真真真假假假假假假假假四23四种命题原命题逆命题否命题逆否命题真假一致真假一致若p则q若q则p若ㄱp则ㄱq若ㄱq则ㄱp
四种命题原命题逆命题否命题逆否命题真假一致若p则q若24例2.把下列命题改写成“若则”的形式,并写出它们的逆命题、否命题与逆否命题,同时指出它们的真假:(1)对顶角相等;(2)四条边相等的四边形是正方形;(3)两个偶数的和是偶数;(4)例2.把下列命题改写成“若则”的形式,并写出它们的逆命题、否25(1)对顶角相等解:原命题可写成:若两个角是对顶角,则这两个角相等;
逆命题:若两个角相等,则这两个角是对顶角;
否命题:若两个角不是对顶角,则这两个角不相等;
逆否命题:若两个角不相等,则这两个角不是对顶角
.(1)对顶角相等解:原命题可写成:若两个角是对顶角,则这两26(2)四条边相等的四边形是正方形.
解:原命题可写成:若一个四边形的四条边相等,则它是正方形;
逆命题:若一个四边形是正方形,则它的四条边相等;
否命题:若一个四边形的四条边不相等,则它不是正方形;
逆否命题:若一个四边形不是正方形,则它的四条边不相等.(2)四条边相等的四边形是正方形.解:原命题可写成:若一27(3)两个偶数的和是偶数解:原命题可写成:若两个数都是偶数,则它们的和是偶数;
逆命题:若两个数的和是偶数,则这两个数都是是偶数;
否命题:若两个数不都是偶数,则它们的和不是偶数;
逆否命题:若两个数的和不是偶数,则这两个数不都是偶数.(3)两个偶数的和是偶数解:原命题可写成:若两个数都是偶数281.一般地,用p和q分别表示原命题的条件和结论,用ㄱp和ㄱq分别表示p和q的否定。于是四种命题的形式就是:2.由四种命题表述可知,要写出原命题的逆命题、否命题与逆否命题,关键是找出原命题的条件p与结论q。若p则q原命题逆命题否命题逆否命题若q则p若ㄱp则ㄱq
若ㄱq则ㄱp
(交换原命题的条件和结论)(同时否定原命题的条件和结论)
(交换原命题的条件和结论,并同时否定)小结:1.一般地,用p和q分别表示原命题的条件和结论,用ㄱp和ㄱq29四种命题原命题逆命题否命题逆否命题真假一致真假一致若p则q若q则p若ㄱp则ㄱq若ㄱq则ㄱp
四种命题原命题逆命题否命题逆否命题真假一致若p则q若30激励学生学习的名言格言220、每一个成功者都有一个开始。勇于开始,才能找到成功的路。221、世界会向那些有目标和远见的人让路(冯两努——香港著名推销商)
222、绊脚石乃是进身之阶。223、销售世界上第一号的产品——不是汽车,而是自己。在你成功地把自己推销给别人之前,你必须百分之百的把自己推销给自己。224、即使爬到最高的山上,一次也只能脚踏实地地迈一步。225、积极思考造成积极人生,消极思考造成消极人生。226、人之所以有一张嘴,而有两只耳朵,原因是听的要比说的多一倍。227、别想一下造出大海,必须先由小河川开始。228、有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。
229、以诚感人者,人亦诚而应。
230、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。231、出门走好路,出口说好话,出手做好事。232、旁观者的姓名永远爬不到比赛的计分板上。
233、怠惰是贫穷的制造厂。234、莫找借口失败,只找理由成功。(不为失败找理由,要为成功找方法)235、如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。236、伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。237、世上没有绝望的处境,只有对处境绝望的人。238、回避现实的人,未来将更不理想。239、当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。240、伟人所达到并保持着的高处,并不是一飞就到的,而是他们在同伴们都睡着的时候,一步步艰辛地向上爬241、世界上那些最容易的事情中,拖延时间最不费力。242、坚韧是成功的一大要素,只要在门上敲得够久、够大声,终会把人唤醒的。
243、人之所以能,是相信能。244、没有口水与汗水,就没有成功的泪水。245、一个有信念者所开发出的力量,大于99个只有兴趣者。
246、环境不会改变,解决之道在于改变自己。247、两粒种子,一片森林。248、每一发奋努力的背后,必有加倍的赏赐。249、如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。250、大多数人想要改造这个世界,但却罕有人想改造自己。激励学生学习的名言格言311.1命题及其关系1.1.1命题1.1命题及其关系1.1.1命题32学好要领不能不能能下列句子中,你能判断它们的真假吗?⑴若直线a∥b,则直线a和直线b无公共点⑵2+4=7;⑶垂直于同一条直线的两个平面平行;⑷3能被2整除;⑸请借我一枝钢笔;⑹画一个角等于已知角;⑺若a2=b2,则a=b.是否作出判断能能能能学好要领不能不能能下列句子中,你能判断它们的真假吗?是否作出33判断为真的语句叫做真命题判断为假的语句叫做假命题
理解:1)命题定义的核心是判断,切记:判断的标准必须确定,判断的结果可真可假,但真假必居其一。判断为真的语句叫做真命题34今天天气如何?你是不是作业没交?这里景色多美啊!-2不是整数。4>3。x>4。看看下列语句是不是命题?不是(疑问句)不是(疑问句)不是(感叹句)是(否定陈述句)是(肯定陈述句)不是(开语句)今天天气如何?看看下列语句是不是命题?不是(疑问句)35例1.判断下列语句是不是命题?是真命题还是假命题判断一个语句是不是命题,关键看这语句是否符合:空集是任何集合的子集若整数a是素数,则a是奇数.指数函数是增函数吗?若空间中两条直线不相交,则这两条直线平行.
X>15疑问句不能判断真假开语句不能判断真假真命题假命题假命题语句是否是陈述句是否可以判断真假。真命题例1.判断下列语句是不是命题?是真命题还是假命题判断一个语句36教材P4练习2判断下列命题的真假1)能被6整除的整数一定能被3整除。2)若四边形四条边都相等,则这个四边形是正方形3)二次函数的图像是一条抛物线。4)两个内角等于45°的三角形是等腰三角形真命题假命题真命题真命题教材P4练习2判断下列命题的真假真命题假命题真命题真命题37“若p则q”形式的命题命题“若整数a是素数,则a是奇数。”具有“若p则q”的形式。p通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。“若p则q”形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q”“只要p,就有q”等形式。“若p则q”形式的命题的优点是条件与结论容易辨别.q“若p则q”形式的命题命题“若整数a38例2指出下列命题中的条件p和结论q:若整数n能被2整除,则n是偶数;若四边形是菱形,则它的对角线互相垂直且平分。解:1)条件p:
结论q:2)条件p:
结论q:整数n能被2整除整数n是偶数四边形是菱形四边形的对角线互相垂直且平分例2指出下列命题中的条件p和结论q:若整数n能被2整除,39例3.把下列命题改写成“若p则q”的形式,并判断真假(1)垂直于同一个直线的两条直线平行(2)负数的平方是负数.(3)对顶角相等假命题真命题真命题例3.把下列命题改写成“若p则q”的形式,并判断真假(1)垂401.1.2四种命题及其关系1.1.2四种命题及其关系41下列命题中②,③,④与命题①有何关系?①如果两个三角形全等,那么它们的面积相等;②如果两个三角形的面积相等,那么它们全等;③如果两个三角形不全等,那么它们的面积不相等;④如果两个三角形的面积不相等,那么它们不全等;下列命题中②,③,④与命题①有何关系?42可以发现命题①与②的像这样,一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题,其中一个命题叫原命题,另一个叫做原命题的逆命题。
条件与结论互换了观察命题①与命题②的条件和结论之间分别有什么关系?①如果两个三角形全等,那么它们的面积相等;②如果两个三角形的面积相等,那么它们全等;可以发现命题①与②的像这样,一般地,对于两个命题,如果一个命43若原命题为:若p,则q则它的逆命题为:若q,则p例:将命题“若a=0,则ab=0”的条件和结论互换,得到它的逆命题逆命题若ab=0,则a=0若原命题为:若p,则q例:将命题“若a=0,则ab=0”的条44可以发现③的条件和结论恰好是①的
像这样,一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题,其中一个叫原命题,另一个叫原命题的否命题.①如果两个三角形全等,那么它们的面积相等;③如果两个三角形不全等,那么它们的面积不相等;观察命题①与命题③的条件和结论之间分别有什么关系?条件和结论的否定可以发现③的条件和结论恰好是①的像这样,一个45因此若原命题为“若p,则q”,则否命题为:若p,则q”否命题例如:若a=0,则ab=0否命题为:若a≠0,则ab≠0.一般地,把条件p,结论q的否定分别记作“p,q”,读作“非p”、“非q”.因此若原命题为“若p,则q”,否命题例如:若a=0,则ab=46④的条件恰好是①的④的结论恰好是①的
像这样的两个命题叫做互为逆否命题,其中一个叫原命题,另一个叫原命题的逆否命题。①如果两个三角形全等,那么它们的面积相等;④如果两个三角形的面积不相等,那么它们不全等;观察命题①与命题④的条件和结论之间分别有什么关系?结论的否定,条件的否定.我们发现④的条件恰好是①的像这样的两个命题叫做互为逆否命题,47即若原命题为:“若p,则q”,则它的逆否命题为“若q,则p”如“若a=0,则ab=0”的逆否命题为:若ab≠0,则a≠0.逆否命题即若原命题为:“若p,则q”,如“若a=0,则ab=0”的逆48原命题:若p则q;逆命题:若q则p;否命题:若┐p则┐q;逆否命题:若┐q则┐p四种命题的形式:原命题:若p则q;四种命题的形式:49准确地写出否定形式是非常重要的,下面是一些常见的结论的否定形式.
正面词语等于大于小于是都是否定不等于不大于不小于不是不都是正面词语全至少有一个能P或qP且q否定不全一个也没有不能非p且非q非p或非q准确地写出否定形式是非常重要的,下面是一些常见的结论的否定形50例1.写出下列命题的逆命题、否命题与逆否命题并判断真假(2)原命题:若两条直线平行,则同位角相等逆命题:若同位角相等,则两条直线平行否命题:若两条直线不平行,则同位角不相等逆否命题:若同位角不相等,则两条直线不平行假真真假真真真真例1.写出下列命题的逆命题、否命题与逆否命题并判断真假(2)51假假假假(3)原命题:若a=0,ab=0逆命题:若ab=0,则a=0真假假真否命题:逆否命题:假假假假(3)原命题:若a=0,ab=0逆命题:若ab=0,52由上可得四种命题之间的关系:原命题(若p,则q)否命题(若非p,则非q)逆否命题(若非q,则非p)逆命题(若q,则p)互逆互逆互否互否互为逆否四种命题的关系由上可得四种命题之间的关系:原命题(若p,否命题(若逆否命题53原命题逆命题否命题逆否命题真真真真真真真真假假假假假假假假四种命题的真假3.原命题为真,它的逆否命题一定为真.1.原命题为真,它的逆命题不一定为真.2.原命题为真,它的否命题不一定为真.原命题逆命题否命题逆否命题真真真真真真真真假假假假假假假假四54四种命题原命题逆命题否命题逆否命题真假一致真假一致若p则q若q则p若ㄱp则ㄱq若ㄱq则ㄱp
四种命题原命题逆命题否命题逆否命题真假一致若p则q若55例2.把下列命题改写成“若则”的形式,并写出它们的逆命题、否命题与逆否命题,同时指出它们的真假:(1)对顶角相等;(2)四条边相等的四边形是正方形;(3)两个偶数的和是偶数;(4)例2.把下列命题改写成“若则”的形式,并写出它们的逆命题、否56(1)对顶角相等解:原命题可写成:若两个角是对顶角,则这两个角相等;
逆命题:若两个角相等,则这两个角是对顶角;
否命题:若两个角不是对顶角,则这两个角不相等;
逆否命题:若两个角不相等,则这两个角不是对顶角
.(1)对顶角相等解:原命题可写成:若两个角是对顶角,则这两57(2)四条边相等的四边形是正方形.
解:原命题可写成:若一个四边形的四条边相等,则它是正方形;
逆命题:若一个四边形是正方形,则它的四条边相等;
否命题:若一个四边形的四条边不相等,则它不是正方形;
逆否命题:若一个四边形不是正方形,则它的四条边不相等.(2)四条边相等的四边形是正方形.解:原命题可写成:若一58(3)两个偶数的和是偶数解:原命题可写成:若两个数都是偶数,则它们的和是偶数;
逆命题:若两个数的和是偶数,则这两个数都是是偶数;
否命题:若两个数不都是偶数,则它们的和不是偶数;
逆否命题:若两个数的和不是偶数,则这两个数不都是偶数.(3)两个偶数的和是偶数解:原命题可写成:若两个数都是偶数591.一般地,用p和q分别表示原命题的条件和结论,用ㄱp和ㄱq分别表示p和q的否定。于是四种命题的形式就是:2.由四种命题表述可知,要写出原命题的逆命题、否命题与逆否命题,关键是找出原命题的条件p与结论q。若p则q原命题逆命题否命题逆否命题若q则p若ㄱp则ㄱq
若ㄱq则ㄱp
(交换原命题的条件和结论)(同时否定原命题的条件和结论)
(交换原命题的条件和结论,并同时否定)小结:1.一般地,用p和q分别表示原命题的条件和结论,用ㄱp和ㄱq60四种命题原命题逆命题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民族弹拨乐器制作工操作水平考核试卷含答案
- 花艺环境设计师岗后水平考核试卷含答案
- 实验动物养殖员诚信考核试卷含答案
- 铝电解综合工岗前个人防护考核试卷含答案
- 自行车装配工岗前进阶考核试卷含答案
- 2024年延安职业技术学院辅导员招聘考试真题汇编附答案
- 耐火制品加工工安全技能强化考核试卷含答案
- 2024年辽宁医药职业学院马克思主义基本原理概论期末考试题附答案
- 金属船体制造工冲突解决强化考核试卷含答案
- 2025年《行测》必考题库带答案
- GJB3243A-2021电子元器件表面安装要求
- 湖北省襄阳市樊城区 2024-2025学年七年级上学期期末学业质量监测道德与法治试卷
- 汽车维修数据共享平台构建-深度研究
- SCR脱硝催化剂体积及反应器尺寸计算表
- 《短暂性脑缺血发作》课件
- 2025年测绘工作总结范文
- 公司质量管理简介
- 外墙涂料翻新施工方案安全措施
- 中国武术段位制考评员考核复习题
- GB/T 5578-2024固定式发电用汽轮机规范
- 中建《项目目标成本测算操作指南》
评论
0/150
提交评论