版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《讲亮点》2021-2022学年七年级数学上册教材同步配套讲练专题3.1代数式和代数式的值【教学目标】进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;2、理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值。【教学重难点】了解代数式的概念,正确列代数式及代数式的意义。【知识亮解】知识点一、代数式代数式的概念:像a-1、a+6、40-m+n、0.015m(n-20)、和2a2这样的式子都是代数式。注意:1、代数式不能有等号和不等号,有就不是代数式,而是等式或者不等式。2、单独一个数字或者字母也是代数式。3、代数式可以包含绝对值。4、注意π并不是字母,而是一个数字。亮题一、字母表示数【例1】★x与y差的平方,列代数式正确的是()A.x﹣y2 B.(x﹣y)2 C.x2﹣y D.x2﹣y2【例2】★火车站和机场都为旅客提供打包服务,如果长、宽、高分别是的箱子,按图方式打包,那么打包带的长至少为()A.4x+7y+10z B.x+2y+3z C.2x+4y+6z D.6x+8y+6z【例3】★“比a的2倍大1的数”,列式表示是()A.2(a+1) B.2(a﹣1) C.2a+1 D.2a﹣1【例4】★走一段10km的路,步行用2xh,骑摩托车所用时间比步行所用时间的一半少1h,骑摩托车的平均速度为km/h.【例5】★“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为.【例6】★★下列图形都是由同样大小〇的按一定的规律组成的,其中第1个图形一共有4个〇,第2个图形一共有9个〇,第3个图形一共有15个〇,…则第70个图形中〇的个数为()A.280 B.349 C.2485 D.2695知识点二、整式一、单项式1.单项式的概念:如,,-1,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。要点诠释:(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母。(2)单项式中不能含有加减运算,但可以含有除法运算.如:可以写成。但若分母中含有字母,如就不是单项式,因为它无法写成数字与字母的乘积。2.单项式的系数:单项式中的数字因数叫做这个单项式的系数。要点诠释:(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数,如:写成。3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。要点诠释:单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算。二、多项式1.多项式的概念:几个单项式的和叫做多项式。要点诠释:“几个”是指两个或两个以上。2.多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项。要点诠释:(1)多项式的每一项包括它前面的符号。(2)一个多项式含有几项,就叫几项式,如:是一个三项式。3.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。要点诠释:(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数。(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出。三、整式1.整式的概念:单项式与多项式统称为整式。要点诠释:单项式、多项式、整式这三者之间的关系如图所示。即单项式、多项式必是整式,但反过来就不一定成立。分母中含有字母的式子一定不是整式。亮题二、整式【例1】★指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?,,,10,,,,,,【例2】★指出下列代数式中的单项式,并写出各单项式的系数和次数.,,,,,a-3,,,【例3】★多项式,这个多项式的最高次项是什么?一次项的系数是什么?常数项是什么?这是几次几项式?【例4】★下列说法正确的是()A.倒数是它本身的数是1 B.绝对值最小的整数是1 C.πr2的系数为1,次数为2 D.2a3+4a2b2﹣3是四次三项式且常数项是﹣3【例5】★下列说法正确的是()A.是单项式 B.单项式的系数是﹣1 C.2x2y的系数、次数都是2 。 D.﹣x4y是5次单项式【例6】★单项式﹣3ab2c的次数是.【例7】★★已知多项式.(1)求多项式各项的系数和次数.(2)如果多项式是七次五项式,求m的值.【例8】★把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;反之,叫做按这个字母的升幂排列。如是按的降幂排列(也是按的升幂排列),请把多项式重新排列.按降幂排列;(2)按升幂排列.知识点三、代数式的值代数式的值:将具体数字代替代数式中对应的字母,计算所得的结果就是这个代数式的值亮题三:代数式的值【例1】★无论x取什么值,代数式的值一定是正数的是()A.(x+2)2 B.|x+2| C.x2+2 D.x2﹣2【例2】★若|x|=1,|y|=4,且xy<0,则x﹣y的值等于()A.﹣3或5 B.3或﹣5 C.﹣3或3 D.﹣5或5【例3】★如图所示,根据数值转换机的示意图,若开始输入x=1,则最后输出的结果是.【例4】★若﹣x2+2x+1的值是3,则x2﹣2x﹣5的值是.【例5】★已知x=2019时,代数式ax3+bx﹣2的值是0,当x=﹣2019时,代数式ax3+bx﹣2的值等于()A.0 B.2 C.4 D.﹣4【例6】★★如图是智多星同学用一模一样的三角形摆放的图案:(1)按照这样的规律,求出第4堆三角形的个数;(2)请帮智多星同学求出第n堆三角形的个数.【例7】★★当今,人们对健康愈加重视,跑步锻炼成了人们的首要选择,许多与运动有关的手机APP(即手机应用小程序)应运而生.小明的爸爸给自己定了减肥目标,每天跑步a公里.以目标路程为基准,超过的部分记为正,不足的部分记为负,他记下了七天的跑步路程:日期18日19日20日21日22日23日24日路程(公里)+1.72+3.20﹣1.91﹣0.96﹣1.88+3.30+0.07(1)分别用含a的代数式表示22日及23日的跑步路程;(2)如果小明的爸爸24日跑步路程是7.07公里,求a的值;(3)在(2)的条件下,若跑步一公里消耗的热量为60千卡,请问小明的爸爸跑步七天一共消耗了多少热量?【例8】★★历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,其中f可用其它字母,但不同的字母表示不同的多项式,例如f(x)=x2+3x﹣5,当x=﹣1时,多项式x2+3x﹣5的值记为f(﹣1)=(﹣1)2+3×(﹣1)﹣5=﹣7.根据上述材料,解析下面问题:已知g(x)=ax3+bx﹣5.(1)当a=1,b=2时,求g(﹣3)的值;(2)若g(2)=7,求g(﹣2)的值.【亮点训练】训练一、字母表示数【变式1】★某商品原价为a元,因销量下滑,经营者连续两次降价,每次降价10%,后因供不应求,又一次提高20%,问现在这种商品的价格是()A.1.08a元 B.0.88a元 C.0.972a元 D.0.968a元【变式2】★一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n千克,则这两块地平均每公顷的粮食产量为()A. B. C. D.【变式3】★“与5的积是m﹣3的数”用代数式可以表示为.【变式4】★某商场实行7折优惠销售,现售价为a元的商品的原价是.【变式5】★★2018秋•江苏省亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119 B.121 C.140 D.142训练二、整式【变式1】★下列代数式:,其中是单项式的是_______________,是多项式的是_______________。【变式2】★下列说法正确的是()A.单项式x3yz4系数是1,次数是7 B.多项式2x2+xy+3是四次三项式 C.单项式的系数是,次数是6 D.x2y+1是三次二项式【变式3】★下列说法:①﹣a一定是负数;②多项式﹣3a2b+7a2b2﹣2ab+1的项数是4;③倒数等于它本身的数是±1;④若|x|=﹣x,则x<0.其中正确的个数是.()A.1个 B.2个 C.3个 D.4个【变式4】★多项式3x2y+2xy3﹣1是次项式.【变式5】★★观察如图所示图形构成的规律,根据此规律,第n个图中小圆点的个数为.【变式6】★已知多项式,(1)请你按照上述规律写出该多项式的第5项,并指出它的系数和次数;(2)这个多项式是几次几项式?【变式7】★如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.训练三、代数式的值【变式1】★按照如图所示的操作步骤,若输出的值为49,输入的数x是()A.7 B.5 C.﹣9 D.5或﹣9【变式2】★无论x取何值,下列代数式的值始终是正数的是()A.|x| B.x2 C.|x|﹣1 D.x2+1【变式3】★如图,是一个数值转换机.若输出的数为25,则输入的数是.【变式4】★试写出一个含有x的代数式,使得当x=0时,代数式的值是5.这个代数式可以是.【变式5】★若﹣x2+2x+1的值是3,则x2﹣2x﹣5的值是.【变式6】★★小红在计算+()2+()3+…+()2020时,拿出1张等边三角形纸片按如图所示方式进行操作.①如图1,把1个等边三角形等分成4个完全相同的等边三角形,完成第1次操作;②如图2,再把①中最上面的三角形等分成4个完全相同的等边三角形,完成第2次操作;③如图3,再把②中最上面的三角形等分成4个完全相同的等边三角形,…依次重复上述操作.可得:+()2+()3+…+()2020的值最接近的数是()A. B. C. D.1【亮点检测】1★如图是一块长为a,宽为b(a>b)的长方形空地,空白处是两个半圆,要将阴影部分绿化,则绿化面积是(答案保留π).2★某品牌电视机搞促销,优惠方案如图.若该电视机原价每台为a元,则售价为元.(用含a的代数式表示,答案需化简)3★单项式的系数是.4★在式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式的个数是()A.5个 B.4个 C.3个 D.2个5★观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为.6★下列各组式子中:(1)x2y与﹣xy2;(2)0.5a2b与0.5a2c;(3)3b与3abc;(4)﹣0.lmn2与mn2中是同类项的有(填序号)7★(2020•连云港)按照如图所示的计算程序,若x=2,则输出的结果是.8★已知代数式2x2﹣4x+5的值为9,则7﹣x2+2x的值为()A.5 B.6 C.7 D.89★若,则的值为____________10★如果单项式xm+2y3与yn+4x5是同类项,那么nm=.11★已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求ab的值.12★某商品降价20%以后的价格是m元,此商品降价前的价
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年白银市特岗教师招聘考试真题题库附答案
- 2024年黑河学院辅导员招聘备考题库附答案
- 2025天津市公务员考试数量关系专项练习题及答案参考
- 水盆工保密意识测试考核试卷含答案
- 电法勘探工岗前成果考核试卷含答案
- 幻灯机与投影机维修工安全实操考核试卷含答案
- 排水管道工安全行为能力考核试卷含答案
- 固体化妆品制造工安全知识能力考核试卷含答案
- 硝酸铵结晶造粒工保密竞赛考核试卷含答案
- 2024年湖北大学知行学院辅导员招聘考试真题汇编附答案
- 04S519小型排水构筑物1
- 光纤激光打标机说明书
- 劳动者个人职业健康监护档案
- 《两角和与差的正弦、余弦、正切公式》示范公开课教学PPT课件【高中数学人教版】
- 治理现代化下的高校合同管理
- 境外宗教渗透与云南边疆民族地区意识形态安全研究
- GB/T 28920-2012教学实验用危险固体、液体的使用与保管
- GB/T 26389-2011衡器产品型号编制方法
- GB/T 16588-2009带传动工业用多楔带与带轮PH、PJ、PK、PL和PM型:尺寸
- 人大企业经济学考研真题-802经济学综合历年真题重点
- 建筑抗震鉴定标准课件
评论
0/150
提交评论