计量经济学-回归模型实验报告_第1页
计量经济学-回归模型实验报告_第2页
计量经济学-回归模型实验报告_第3页
计量经济学-回归模型实验报告_第4页
计量经济学-回归模型实验报告_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

回归模型分析报告背景意义:教育是立国之本,强国之基。随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。 本报告将从这两个方面进行分析。我国1991年~2013年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。试建立教育经费收入 Y关于人均国内生产总值指数Xi和年末城镇人口数X2的回归模型,并进行回归分析。年份Y(亿元)X1(1978年=100)X2(万人)1991731.50282256.67312031992867.04905289.723217519931059.93744326.323317319941488.78126364.913416919951877.95011400.63517419962262.33935435.763730419972531.73257471.133944919982949.05918503.254160819993349.04164536.944374820003849.08058577.644590620014637.66262621.094806420025480.02776672.995021220036208.2653735.845237620047242.59892805.25428320058418.83905891.315621220069815.30865998.7958288200712148.06631134.6760633200814500.737421237.4862403200916502.70651345.0764512201019561.847071480.8766978201123869.293561613.6169079201228655.305191730.1871182201330364.718151853.9773111资料来源:中经网统计数据库

2,000-nn1000020,00030,00040.00080,00070,00060,0005090040900309001U口002,000-nn1000020,00030,00040.00080,00070,00060,0005090040900309001U口0020,00030,000 40月00根据经济理论和对实际情况的分析可以知道,教育经费收入 Y依赖于人均国内生产总值指数Xi和年末城镇人口数X2的变化,因此我们设定回归模型为?*=??+??????+??????+???应用EViews的最小二乘法程序,输出结果如下表DependentVaria&ie:YMethod:L&astSquaresDate:1321/15Time:09:30Sample:19912013Includedobservations:23VariableCoefficientStd.Errort-StatisticPfgC5059.8551B66J77 2.6S1774O.OU338.749031.811701 15.86&S60.0000X2-0.3081760.065569 -63&16330.0000R-squarad0999147Meandepenoer»t^ar9059646AdjustedR-squarea09S8062S.Ddependentvar0050.661S.E.ofregressionQ&sgoosAkaikeinfoentenon15.75217Sumsquaredresid19558484Schwarzcriterior16.90028Losjiiteiihood-139.6500Hanran-auinncriter15.78942F-statistic9114038Curbin-Watsonstat0,549316ProbtF-statistic)0.000000??=5058.835+28.7491??1?,0.3982??2??(2.68) (15.9) (-6.1)R2=0.99 ??=0.99 F=911.4异方差的检验1.Goldfeld-Quandt检验Xi和X2的样本观测值均已按照升序排列,去掉中间X1和X2各5个观测值,用第一个子样本回归:DependentVariable:YMethod:LeastSquaresDate-12/21/15Time:09:33Sample:19911999includedobservations::9VariableCoefficientStd.Errort-StatishcPron.C-3510658573.0425 -5.Z1S1160.0020Z159095401.58Z534 3.7341090.0097X29.0839200035055 2.39328500538R-squared0.593516Meandependentvar1901.S33AdjustedR-squared09Q1255S.D.dependent\ar937.965SS.E.ofregression87.21013Akaikeinfocriterion12.03572Sumsquaredresid45633.64Schwarzcriterion12,10146Loglikelihood-5116074Harnan-Quinncriter.1189^85Fatalistic4597017Durbin-Watsonstat1554407Prob(F-statistic)o.oo0000??=-3510.668+5.9096?%?#0.0839??2??SSE=45633.64用第二个子样本回归:DependentVariable:YMethod:LeastSqua「esDate:12721/15Time:□9:34Sample:20052C13Includedobservation口gVariableCoemdentStd.Errcr 卜StatisticProc.C17653651100642 162302201557X1107,536147.71512 2.2547550.0550X2-4.74879727069S2 -17&427701299R-squared0967065Meandependentvar1S20409AdjustedR-squared09627539Ddependent^ar79H7917S.Eofregression1049.029AJcakkftInfocritsncn17.01034Sumsquaredresid6602890.Schwarzcriterion17.0760SLoglikelihood-73.54652Hannar-Quinnalter1636347F-statislic2289229Durbin-WatBonstat1.923931Prob(F-staflStic)0.000002绯178636.6+107.5861??i?74.7488??2??SSE2=6602898Ho=ut具有同方差,H1=ut具有递增型异方差构造F统计量。F=22=黑翳=114.7>F。.。5(9,9)=3.18*+5UDDW2.所以拒绝原假设,计量模型的随机误差项存在异方差2.White检验因为模型中含有两个解释变量,辅助回归式一般形式如下

???=??+?????1+?2???2+?????2+?????2+????????2+???辅助回归式估计结果如下HeteroskedasticitfTest;WhiteF-statistic2942706ProbF(517)0.0430Obs*R-&quared10,67089FronChbSquare(5)00S83ScaledexplainedSS6726284Prob.Chi-Square(5)0541STestEquafion:DependentVariable:RESIDEMethod:LeastSquaresDale:12/21/15Time:09:38Sample:19912C13Includedobservations22VariableCoefficientStd.Errort-StatisticProt).C-1245277630348332・0410328O.S067X140478.2372466.12-0.55S5S10.5S37X1*2-19919572&.91602-0.6S42Q40.6217X1*X21.36334022373120.60936505503X210674322249.9100.474454口6412X2A2-002023500384B7■0.525770oeosaR-squarea口483951Meandepena&nty/ar850368.9AdjustetlR-s(iuared0306290S.D.dependentvar1122691.S.Eolregression935081.3Akaikeinfocriterion3055411Sumsquared「esid1.49E+13SchwarzcriteriQn3685033Leglikelihood-345.3723Hannan-Ouinncriten3052961F-statistic2942706Ournin-Watsonstat2.E44510Prot)[F-&tatisticj0043027??2=-12452776-40478.23????1+1067.432????718.9196????2-0.0202??)?2+1.3633???????2因为TR2=10.67>??i(5)=9.236该回归模型中存在异方差3.克服异方差以1/Xi做加权最小二乘估计,Dependent''Jariabile:YMethcd:Lea£tSquaresDate:12/21/15Time:1O;Q8Sample:19912013Includedobservations:23Weighilngsenes:1/K1Weighttype:Inversevariance(averagescaling)VariableCoefficientStd.Errort-StatistiGFrob,C3678.2011412.405274581300125X127.024571.B820421B.06653a.ooooX2-0,3461540.054423-6260297o.ooaoWeightedStatisticsR-scjLia「eci0.987992Meandependentwar65B5.27SAdjustedR-squaredo.g舱7glS.D.dependsnV-ar4981.347SEofregression工-9即5Akaikeinfocriterion16.20956Sumsquaredresid-11367925Schwarzcriterion1635767Loglikelihood-183.4099Hannan-Quinnenter1624691F-statistic8227495DurbinAATdbofistat0472699Frob{F-statistic)0.000000Weighedm€andep.5093.284UnweightedStatisticsR-3Q问的3.968433Meandependentwar9059.646AdjustedR,squa「ed0.987331S.D.dependent;ar9050.681S.E.ofregression1019.697Suesquaredresid20754674DurfilivWats&nstat0521574估计的结果还原变量,得领〒3878.201+27.0246??1?70.3462?%?再用上表对应的残差做 White检验

HeteroskedasticityTest^statisticObs^'squaredScaledexplainedSS206942237023303985003Prob.F(5.17)Prob.Chi'Square(5)Prob.Chi-Square(5)0.119701215Q.5516TestEquation.DependertVariable:啊GT_RESID上2MethodLeastSquaresDate:12/21/15Time:10:12Sample:19912013Indudedobservations:23CollineartestregressorsdroppedfrotspeaficationVariableCoefficientStdErrorl-StafisticFrobC1113169.21479597 0,0516240.9595WGT*23574g8215S10501 0.2290100.92102.66269217.85124 0.20517903299X1fiX2*WGTft2-01374551.263073 -010970269139X2A2*WGTA20D031780.021258 01494310,S830X2*WGTn2-190.95511171.S36 -016294008725R-squared0.378362Meandependentvar494257.6adjustedR-squared0.195527S.D.dependentsar556180.0S.E.ofregression+98S511Akaikeinf。criteriun2929746Sum陷呵“resid423E+12Schwarzcriterion29,59368Loglikelihood-330.9208Hannan-Quinncrikr.23,37196F-曲aflstiu2D69422Durbin-Watsonstat2507731Prob(F-statistic)0119712由上表可知TR2=8.7<??i(5)=9.236,说明以及克服了异方差性自相关的检验1.DW检验

DependentVariable:YMethcd-LeastSquaresDatK12/21/15Time-10:08Samiple:19912013Indudedobsefvations:23Weightingseries:1W11Weigtiltype:Inversevariance(averagescaling)VariableCqefficientStlErrort-StatistiGProb.c3876.2011412405 2.7458130.0125X127.024571.&82C42 16,C&6530.0000X2-0.3451540.0S4423 -6.3C0397a.ooooWeightedStatisticsR'Squared0987992Meandependent^ar5535.276MustedR-squared0.985791S.D.dependentvar4901.347S.E.ofregression753.5206Akaikeinfccriterion16,20956Sumsquaredresid11367925Schwarzcriterion1635767Loglikelihood-1B34Q99Hannan-Quinnenter.116.24691F-statistic8227495Durbin-Watsonstat0472639Prob(F^tatistic)0.000000'.Vsightedmeandep5093.234UnweightedSt曲stiesR-squared0.983483Meandependentvar90瑜645AdjustedR^squared0.987331S.D.dependentvar9050.6B1S.E.ofregression1019.697Sumsquaredresid20764874Durbln-Wateon」at0521574因为已知DW=0.47,若给定产0.05,查表得DW检验的临界值dL=1.17,du=1.54。因为DW=0.47<1.17,根据判别规则,认为误差项 ut存在严重的正自相关。2.LM检验

3.F-statisticObsfcR-squared3.4597216364184Prob<FC217)ProbChi-Square(2)3.F-statisticObsfcR-squared3.4597216364184Prob<FC217)ProbChi-Square(2)0.054900415TestEquation.Depend&ntVariatile:RESIDruiethodLeastSquaresDate:12/21/15Time:12:31Sample:19922013Inducedobsen/attons:22Presamplemissingvaluelaggedresidualssettozero.VariableCoefficientStd.Errort-StatisticProbC-706.27061164736 闻£06378口552mX1-0765*X1(-1)4602248331B005 -1.2054070.2446X2-0765"X2(-1)0.1320500151557 0.8713560.3557RESID(-1)0.9578070364S09 5.62910S0.0176RESID(-2)-1.2615700576139 -2J896970.0428R-sguaredQ.20H281n&and€pen{i&ntvar^2.48E-13AdjustedR-squared0122053SlD.dependentvar6528291SEcfregression6115932Akaikeinfocrlierlon15.B6706Sumsquaredresid6360866Scnwarzcrltenon10.11502Loglikelihood-1G9,5376Hannan-Quinnenter.1M2547F-statistic172985QDwrtjin-Watsanstat1709870臼。3仔褊而鼠冏口,189832Breusch-CactfrejjSerialCorrelationLMTest:LM=6.36>??Q5(2)=5.991所以误差项存在二阶自相关克服自相关首先估计自相关系数??=????1-h一1一0.472=0.765对原变量做广义差分变换。令GDYt=Yt-0.765Yt-iGDXit=Xit-0.765Xit-iGDX2t=X2t-0.765X2t-i以GDYt,GDXit,GDX2t(i992~20i3年)为样本再次回归Depend&ntVariable:Y-0765*Y(*1)Method.LeastSquaresDate:12/21H5Time:12:19Sample但咖矶皿19922013mciutiedobservations:22afteradjjslmentsVariableCoefficientStd.Error1-StatisticProb.CX1-0,766*X1r-1}X2^,765*X2G1)241,32202742970525 0.1S18563.&46518 75221630.156S39 -192S490249900030D0691R-squared0954230Meandependent\/ar3248.404AfljusteelR-squamd0.949412SD.dependentwar3051.463S.E.ofregression6S63290Afcaifcemfocriterion16C2672SumsquaredresidS949904.Schwarzcriterion161764^Loglivelihood-1732939Hannan-Quinnenter.160&VGFatalistic193.0535Durbin-Watsanstat1.368592ProbtF-statistic)0.009000得到GDYt=241.322+27.4297GDXit-0.3024GDX2tDW=1.4,介于dL=1.17,du=1.54之间,所以不能判别 3是否存在一阶自相关,自相关性没有消除由上一步LM统计量知误差项存在二阶自相关,采用直接拟合的估计结果是,D&pendentVariaBle:YMetfiodLeastSquaresDate:12J21/15Time:1238Sample(□djusted):19932013kidudadobseivations;21aft«radjustmentsConvergenceachisvadafter7iterationsVariableCoeflicientStdEnart-StetisticPrabc2610.3131928.3541.3536410.1947X124,908302.34358110,52830o.oocaX2-028989S0.073680-3.9345180.0012.网1)13898020.2990884.6374980.0003AR⑵-1.1527360.465390-2.47692400248R-squared0.096549Meandependent/ar9844.344AdjustedR-squared0.396696S.D.dependentvsr&09OJ249S.E.regressiori597.0527Akaikeinfocriterion1582614Gumsquaredresid5703551SchwaiT.criterion1807434Loglik&llilioad-1611745Hannan-Cuinnc「it白「.15,83012F-statistic1155.034□urbin-Wdsonstaf1751639Prob(F-statistic)0000000Inverted.iKRoots.69-.62I.69*82iEstimated isnonstationary舜2610.313+24.9083??i?70.2899??2??+1.3898????-i-1.1527????-2+???DW=1.75介于du=1.54和4-du=2.46,依据判别规则,误差项已消除自相关

多重共线性的检验.Klein判别法Covariance.Analysis:OrdinaryDate:12/23y15Time:12:10Sample:19912013includedobservations:23CovarianceCorrelationXIX2X123237431.000000X2&22T7851.77E+0B99717271.000000因为|rxix2|=0.97<R2=0.99,所以不存在多重共线性.修正Frisch法用每个解释变量对被解释变量做最小二乘回归DependentVariable:YLlettiad.LeastSquaresDate:12/23TI5Time:12:16Sample:19912013Inductedobservations:23VariableCoefficientStd.Eror t-S1atistucProt>.C-&C97.3336600321 -3.966242acoocX118077700703142 25.709S90.0000R-squar&d0.969208Meandependentvar9059646AdjustedR-squared0.967742s.d.dependentvar9050.631S.E.ofregression1625.552Akaikeinfocriterion17.70S02Sumsquaredresid55490797Schwarzcriterion17,80676Laglikelihood-20t&423Hannan'Quinncriter.17732&6Ffitaifstia&60,9596Durbin-Watsonslat0.239431Prob(F-statistic)0.000000—??=-6097.333+18.0786??iR2=0.969 ??=0.968

DependentVariable:YMethodLeastSquaresDate:12/23/15Time12:20Sample:13912013Inducedobsen/aticins:23VariableCoefficientStd.Errort-SlatisticProb.C-21977092913204 -75439570.0000X20.5147250,055798 11,0170。0.0000R-squared5852502Meandep«ndentvar9059.646AdjustedR-squared0.&4547BS.D.dependentvar9050.601S.E.ofregression3557750Akaikeintocriterion19,27459Sumsquaredresid266E*O6Schwarzcriterion1037333Loglikelihood-219.657BHannan-Quinncriter.19,29942Fatalistic1213744Durbin-Watsonstat0122423Prob(Rstalistic)0.000000??=-21977.09+0.6147??2R2=0.852 ??=0.845取第一个方程为基本回归方程,引入 X2,对Y做关于Xi和X2的最小二乘回归,DependentVariable:¥Metliod:LeastSquaresDate:12/23/15Time:1224Sample:19S12013includedobservations:23VariableCoefficientStd.Errort-StatisticProb.C5058.8351885.377 2兆1774oai43K12874D0S1,311701 15.858560.0000X2-0-3W1760.065638 -5.0616380.0000R-squared09S9147M&andependentvar3059.646AdjuStsdR-sqtared0969062SDd&p&nd&ntvar90E0.681SEofr&gression968,9005-Xksikcinfocriterion16.75217Sumsquaredresid19558484Schwarzcriterion1&90028Loglikelihood-189.6500Hannan-Quinncriter.1673942F-statistic911.4038Durbin-Watsonstat054981&FirobtF-Elati£tic)0000000??=5058.835+28.7491??i-0.3982??R2=0.989 ??=0.988可以看出,加入X2后,R2和??均有所增加,Xi系数显著性不受影响,所以在模型中保留X2综上:

D&pendentVariaolB:VMetTiod.LeastSquaresDate:12J21/15Time:1238Sample(adjusted)-19932013Includedobservations:21aft«radjustmentsConvergerceachiev&dafter7iterationsR-squared0.996549R-squared0.996549AdjustedR-squared0995696S.E.ofregressionS97.0627Sumsquaredies:id5703551.Loglik&llihood-1611745F-statistic1155.034Prob(F-st3tistic>0000000Meandependentrar98M,3超S.D.dependentvar&C9C249Akaikeinfocriterion1502614Schwarzcriterion16,37434Hannan-Cuinnc「it白「.15S8012Durbin-Batsonstat1751639VariableCoefficientStdErrwt-StatisticPretb.c2610.3131928.3541.35364101947X124,9083023435sl10,52830o.oocoX2-0.2893960.073690-3.9345180.0012AR(1)1.3998020.2996884.637498O.OOC3.崛⑵-11527360.465350-2.4769240.0248Invertc口ARRoots .&9-.B2I .69^82iEstimated-Rprocessisnonstationary估计的回归模型为绪2610.313+24.9083??1?70.2899?%?+1.38987???/-1.1527????-2+???模型总显著性的F检验Ho=31=匝=?=3??=0H1=例不全为零F=1155.034>Fo.o5(2,17)=3.59,拒绝H。,总体回归方程存在显著的线性关系模型单个回归参数显著性的 t检验由上表看出,截距项的t检验未通过,接受 H。,位=0皿?2610.313+24.9083??1?70.2899??2??+1.3898????-1-1.1527????-2+???Dependentvariable:YMethod:LeastSquaresDate:12^3/15Time:12:40Sample(adjusted):19932013Includedobservations:21afteradjustmentsConvergenceadiievedafter6iterationsVariableCoefficientStd.Error sticProb.X122.2470314B63B3 14967720.0000X24Mqs2fr20323459 £.3231070.0000AR(1)1.497*37Q.3410S1 43&C6470.0004AR⑵-1.1725550542590 ^216103200453R-sqjared0996187Meandependentvsr5846348AdjustedR-squared0935515SDdependentvarS090249SEofregression606.3020Akaikeinfocriterion1583051Sumsquaredresid63Q067SSchwarzcriterion16,02946La9likelihood-152.2203Hannan-Quinncriter.15,&7369Durbin-Wartsonstat1632305In^'ertedARRoots75<79i75^.781EstimatedAR口「ocessisncnstation

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论