江西省横峰中学等五校2023届高一上数学期末统考模拟试题含解析_第1页
江西省横峰中学等五校2023届高一上数学期末统考模拟试题含解析_第2页
江西省横峰中学等五校2023届高一上数学期末统考模拟试题含解析_第3页
江西省横峰中学等五校2023届高一上数学期末统考模拟试题含解析_第4页
江西省横峰中学等五校2023届高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.下列函数中,在区间上为增函数的是()A. B.C. D.2.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至多有1人投中的概率为()A. B.C. D.3.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.4.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.5.的弧度数是()A. B.C. D.6.已知向量,,且,那么()A.2 B.-2C.6 D.-67.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.8.下列函数中,既是偶函数,又在区间上单调递增的是()A. B.C. D.9.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则10.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣311.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数12.已知函数若,则实数的值是()A.1 B.2C.3 D.4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知幂函数的图象经过点(16,4),则k-a的值为___________14.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________15.已知角α∈(-,0),cosα=,则tanα=________.16.函数的单调递增区间是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).18.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.19.假设有一套住房从2002年的20万元上涨到2012年的40万元.下表给出了两种价格增长方式,其中是按直线上升的房价,是按指数增长的房价,是2002年以来经过的年数.05101520万元2040万元2040(1)求函数的解析式;(2)求函数的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图像,然后比较两种价格增长方式的差异.20.目前,"新冠肺炎"在我国得到了很好的遏制,但在世界其他一些国家还大肆流行.因防疫需要,某学校决定对教室采用药熏消毒法进行消毒,药熏开始前要求学生全部离开教室.已知在药熏过程中,教室内每立方米空气中的药物含量(毫克)与药熏时间(小时)成正比;当药熏过程结束,药物即释放完毕,教室内每立方米空气中的药物含量(毫克)达到最大值.此后,教室内每立方米空气中的药物含量(毫克)与时间(小时)的函数关系式为(为常数).已知从药熏开始,教室内每立方米空气中的药物含量(毫克)关于时间(小时)的变化曲线如图所示.(1)从药熏开始,求每立方米空气中的药物含量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的药物含量不高于0.125毫克时,学生方可进入教室,那么从药熏开始,至少需要经过多少小时后,学生才能回到教室?21.(1)已知,求的值;(2)已知,,且,求的值22.已知集合,(1)若,求,;(2)若,求实数的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、在区间上为减函数,函数在区间上为增函数,函数在区间上不单调.故选:B.2、C【解析】根据题意,列出所有可能,结合古典概率,即可求解.【详解】甲、乙、丙3人投中与否的所有情况为:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8种,其中至多有1人投中的有4种,故所求概率为故选:C.3、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.4、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.5、C【解析】弧度,弧度,则弧度弧度,故选C.6、B【解析】根据向量共线的坐标表示,列出关于m的方程,解得答案.【详解】由向量,,且,可得:,故选:B7、C【解析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C8、D【解析】根据题意,依次判断选项中函数的奇偶性、单调性,从而得到正确选项.【详解】根据题意,依次判断选项:对于A,,是非奇非偶函数,不符合题意;对于B,,是余弦函数,是偶函数,在区间上不是单调函数,不符合题意;对于C,,是奇函数,不是偶函数,不符合题意;对于D,,是二次函数,其开口向下对称轴为y轴,既是偶函数又在上单调递增,故选:D.9、D【解析】由不等式性质依次判断各个选项即可.【详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.10、D【解析】等价于二次函数的最大值不小于零,即可求出答案.【详解】设,,使得不等式成立,须,即,或,解得.故选:D【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.11、A【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A12、B【解析】根据分段函数分段处理的原则,求出,代入即可求解.【详解】由题意可知,,,又因为,所以,解得.故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.14、【解析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.15、【解析】利用同角三角函数的平方关系和商数关系,即得解【详解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案为:16、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、⑴见解析;⑵见解析.【解析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转证线面垂直平面,易证,从而问题得以解决.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,平面,又,平面,平面,,平面,平面,矩形是正方形,,平面,,平面又平面,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.19、(1)(2)(3)详见解析【解析】(1)因为是按直线上升的房价,设,由表格可知,,进而求解即可;(2)因为是按指数增长的房价,设,由表格可知,,进而求解即可;(3)由(1)(2)补全表格,画出图像,进而分析即可【详解】(1)因为是按直线上升的房价,设,由,,可得,即.(2)因为是按指数增长的房价,设,由,可得,即.(3)由(1)和(2),当时,;当时,;当时,,则表格如下:05101520万元2030405060万元204080则图像为:根据表格和图像可知:房价按函数呈直线上升,每年的增加量相同,保持相同的增长速度;按函数呈指数增长,每年的增加量越来越大,开始增长慢,然后会越来越快,但保持相同的增长比例.【点睛】本题考查一次函数、指数型函数在实际中的应用,考查理解分析能力20、(1);(2)0.8小时.【解析】(1)时,设,由最高点求出,再依据最高点求出参数,从而得函数解析式;(2)解不等式可得结论【详解】解:(1)依题意,当时,可设,且,解得又由,解得,所以(2)令,即,得,解得,即至少需要经过后,学生才能回到教室.21、(1)(2),【解析】(1)先求得,然后对除以,再分子分母同时除以,将表达式变为只含的形式,代入的值,从而求得表达式的值.(2)利用诱导公式化简已知条件,平方相加后求得的值,进而求得的值,接着求得的值,由此求得的大小.【详解】(1)(2)由已知条件,得,两式求平方和得,即,所以.又因为,所以,把代入得.考虑到,得.因此有,【点睛】本小题主要考查利用齐次方程来求表达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论