




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的一个零点所在的区间是()A. B.C. D.2.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.243.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.若直线m:,则C.点到直线l的距离是1D.过与直线l平行的直线方程是4.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.5.已知,,则下列说法正确的是()A. B.C. D.6.已知向量,满足,,且与的夹角为,则()A. B.C. D.7.已知函数是上的奇函数,且在单调递减,则三个数:,,之间的大小关系是()A. B.C. D.8.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.49.已知定义在R上的函数的图象是连续不断的,且有如下对应值表:x123453那么函数一定存在零点的区间是()A. B.C. D.10.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形中,,根据这些信息,可得()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设是以2为周期的奇函数,且,若,则的值等于___12.满足的集合的个数是______________13.已知函数,是定义在区间上的奇函数,则_________.14.圆的圆心坐标是__________15.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知二次函数,满足,.(1)求函数的解析式;(2)求在区间上的值域.17.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.18.定义在上的奇函数,已知当时,(1)求在上的解析式;(2)若时,不等式恒成立,求实数的取值范围19.如图所示,在中,已知,,.(1)求的模;(2)若,,求的值.20.已知的顶点,边上的高所在直线的方程为,边上中线所在的直线方程为(1)求直线的方程;(2)求点的坐标.21.某校高一(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是元,经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成:一部分是购买纯净水的费用,另一部分是其他费用780元,其中纯净水的销售价(元/桶)与年购买总量(桶)之间满足如图所示的关系.(Ⅰ)求与的函数关系;(Ⅱ)当为120时,若该班每年需要纯净水380桶,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料相比,哪一种花钱更少?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】先求出根据零点存在性定理得解.【详解】由题得,,所以所以函数一个零点所在的区间是.故选B【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.2、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图3、D【解析】根据直线的倾斜角、斜率、点到直线的距离公式、两直线平行的条件逐一判断各个选项即可【详解】∵:,即,∴直线的斜率,∴,则A错;又,则B错;点到直线的距离是,则C错;过与直线平行的直线方程是,即,则D对;故选:D【点睛】本题主要考查直线的方程,属于基础题4、B【解析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.5、C【解析】根据已知条件逐个分析判断【详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C6、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.7、D【解析】根据题意,得函数在上单调递减,又,,然后结合单调性判断【详解】因为函数是上奇函数,且在单调递减,所以函数在上单调递减,∵,,∴,即故选:D8、B【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题9、B【解析】利用零点存在性定理判断即可.【详解】则函数一定存在零点的区间是故选:B【点睛】本题主要考查了利用零点存在性定理判断零点所在区间,属于基础题.10、B【解析】由题意,结合二倍角余弦公式、平方关系求得,再根据诱导公式即可求.【详解】由题设,可得,,所以,又,所以.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:12、4【解析】利用集合的子集个数公式求解即可.【详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.13、27【解析】由于奇函数的定义域必然关于原点对称,可得m的值,再求【详解】由于奇函数的定义域必然关于原点对称∴m=3,故f(m)=故答案为27【点睛】本题主要考查函数的奇偶性,利用了奇函数的定义域必然关于原点对称,属于基础题14、【解析】根据圆的标准方程,即可求得圆心坐标.【详解】因为圆所以圆心坐标为故答案为:【点睛】本题考查了圆的标准方程与圆心的关系,属于基础题.15、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)由可得,由可得出关于、的方程组,解出这两个未知数的值,可得出函数的解析式;(2)由二次函数的基本性质可求得函数在区间上的值域.【小问1详解】解:由可得,,由得,所以,解得,所以.【小问2详解】解:由(1)可得:,则的图象的对称轴方程为,,又因为,,所以,在区间上的值域为.17、(1);(2)分钟;(3)见详解.【解析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【点睛】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.18、(1);(2)【解析】(1)由函数是奇函数,求得,再结合函数的奇偶性,即可求解函数在上的解析式;(2)把,不等式恒成立,转化为,构造新函数,结合基本初等函数的性质,求得函数的最值,即可求解【详解】解:(1)由题意,函数是定义在上的奇函数,所以,解得,又由当时,,当时,则,可得,又是奇函数,所以,所以当时,(2)因为,恒成立,即在恒成立,可得在时恒成立,因为,所以,设函数,根据基本初等函数的性质,可得函数在上单调递减,因为时,所以函数的最大值为,所以,即实数的取值范围是【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的恒成立问题的求解,其中解答中熟记函数的奇偶性,以及利用分离参数,结合函数的最值求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题19、(1)(2)【解析】(1)根据向量数量积定义可得,再根据向量加法几何意义以及模性质可得结果(2)先根据向量加减法则将化为,再根据向量数量积定义求值试题解析:(1)==;(2)因为,,所以.20、(1);(2)【解析】(1)由,知两条直线的斜率乘积为-1,进而由点斜式求直线即可;(2)设,则,代入方程求解即可.试题解析:(1)∵,且直线的斜率为,∴直线的斜率为,∴直线的方程为,即(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特发性面神经麻痹的临床护理
- 宜春学院《生态景观建筑》2023-2024学年第二学期期末试卷
- 瘦腰的临床护理
- 2025年护士执业资格考试题库(外科护理学专项)整形外科护理实践试题集
- 2025年特种设备安全管理人员安全生产责任模拟试卷
- 2025年统计学期末考试题库:统计调查设计与实施方法解析试题库
- 2025年消防安全知识培训考试题库:消防队伍建设与管理消防安全法规案例分析与应用试题
- 2025年小学教师资格考试《综合素质》教育资源整合易错题解析试卷(含答案)
- 2025年成人高考语文高频考点:古诗文背诵技巧解析速记题库试题
- 2025年辅导员职位招聘考试题库:学生综合素质评价体系知识问答
- 《旅行社经营与管理》电子教案 5-3 旅行社接待业务3
- 2025年浙江路桥中国日用品商城股份有限公司招聘笔试参考题库附带答案详解
- 2025年三力测试题模板及答案
- 餐饮行业企业战略管理论文4000字范文
- 第37届(2020年)全国中学生物理竞赛预赛试题及参考解答
- 老年康体指导-职业教育-1740155892240
- DG-TG08-12-2024 普通中小学建设标准
- 2025年第六届美丽中国全国国家版图知识竞赛题(附答案)
- 五星级酒店餐饮部管理制度大全
- 2025年紫金财产保险股份有限公司招聘笔试参考题库含答案解析
- 2025年高中作文素材积累:15个“小众又万能”的人物素材
评论
0/150
提交评论