吉林省长春市七中2022年高一数学第一学期期末学业质量监测试题含解析_第1页
吉林省长春市七中2022年高一数学第一学期期末学业质量监测试题含解析_第2页
吉林省长春市七中2022年高一数学第一学期期末学业质量监测试题含解析_第3页
吉林省长春市七中2022年高一数学第一学期期末学业质量监测试题含解析_第4页
吉林省长春市七中2022年高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.3.已知函数的定义域为,且满足对任意,有,则函数()A. B.C. D.4.已知方程的两根为与,则()A.1 B.2C.4 D.65.已知点,.若过点的直线l与线段相交,则直线的斜率k的取值范围是()A. B.C.或 D.6.“,”是“函数的图象关于点中心对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数的定义域是()A. B.C D.8.若,,,则实数,,的大小关系为A. B.C. D.9.若角满足条件,且,则在A.第一象限 B.第二象限C.第三象限 D.第四象限10.过点且与直线平行的直线方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点在直线上,则的最小值为______12.设向量,,则__________13.幂函数的图象过点,则___________.14.已知直线,互相平行,则__________.15.函数的定义域是____________.(用区间表示)16.设函数在区间上的最大值和最小值分别为M、m,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排18.已知,,且.(1)求的值;(2)求.19.已知全集,集合,或求:(1);(2).20.设是两个不共线的非零向量.(1)若求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线.21.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D2、B【解析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.3、C【解析】根据已知不等式可以判断函数的单调性,再结合四个选项进行判断即可.【详解】因为,所以由,构造新函数,因此有,所以函数是增函数.A:,因为,所以不符合增函数的性质,故本选项不符合题意;B:,当时,函数单调递减,故本选项不符合题意;C:,显然符合题意;D:,因为,所以不符合增函数的性质,故本选项不符合题意,故选:C4、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D5、D【解析】由已知直线恒过定点,如图若与线段相交,则,∵,,∴,故选D.6、A【解析】先求出函数的图象的对称中心,从而就可以判断.【详解】若函数的图象关于点中心对称,则,,所以“,”是“函数的图象关于点中心对称”的充分不必要条件故选:A7、B【解析】解不等式组即可得定义域.【详解】由得:所以函数的定义域是.故选:B8、A【解析】先求出a,b,c的范围,再比较大小即得解.【详解】由题得,,所以a>b>c.故选A【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、B【解析】因为,所以在第二或第四象限,且,所以在第二象限考点:三角函数的符号10、D【解析】先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.12、【解析】,故,故填.13、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:14、【解析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.15、【解析】函数定义域为故答案为.16、2【解析】,令,易得函数为奇函数,则,从而可得出答案.【详解】解:,令,因为,所以函数为奇函数,所以,即,所以,即.故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100时,生产乙设备的最大年利润为2300(万元)(y1)max-(y2)max=(9900-200m)-2300=7600-200m当30≤m<38时,7600-200m>0,当m=38时,7600-200m=0,当38<m<40时,7600-200m<0,故当30≤m<38时,投资生产甲设备200台可获最大年利润;当m=38时,生产甲设备与生产乙设备均可获得最大年利润;当38<m<40时,投资生产乙设备100台可获最大年利润【点睛】考查根据实际问题抽象函数模型的能力,并能根据模型的解决,指导实际生活中的决策问题,属中档题18、(1);(2).【解析】(1)先根据,且,求出,则可求,再求;(2)先根据,,求出,再根据求解即可.【详解】(1)∵且,∴,∴,∴;(2)∵,∴,又∵,∴,,所以.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.本题考查运算求解能力,是中档题.19、(1);(2).【解析】(1)直接求集合的交集运算解题即可;(2)先求集合的补集,再求交集即可解题.【详解】(1)因为全集,集合,或所以(2)或;=或.【点睛】本题考查求集合交集和补集的运算,属于基础题.20、(1)证明见解析;(2).【解析】(1)利用向量共线定理证明向量与共线即可;(2)利用向量共线定理即可求出【详解】(1)∵,∴//,又有公共点B∴A、B、D三点共线(2)设,化为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论