2023届福建省三明市第二中学数学高一上期末质量检测模拟试题含解析_第1页
2023届福建省三明市第二中学数学高一上期末质量检测模拟试题含解析_第2页
2023届福建省三明市第二中学数学高一上期末质量检测模拟试题含解析_第3页
2023届福建省三明市第二中学数学高一上期末质量检测模拟试题含解析_第4页
2023届福建省三明市第二中学数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.若直线过点,,则此直线的倾斜角是()A.30° B.45°C.60° D.90°2.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴3.与终边相同的角是A. B.C. D.4.已知,点在轴上,,则点的坐标是A. B.C.或 D.5.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增6.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)7.已知函数与在下列区间内同为单调递增的是()A. B.C. D.8.已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B.C. D.9.数列满足,且对任意的都有,则数列的前100项的和为A. B.C. D.10.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个11.已知是以为圆心的圆上的动点,且,则A. B.C. D.12.已知直线、、与平面、,下列命题正确的是()A若,则 B.若,则C.若,则 D.若,则二、填空题(本大题共4小题,共20分)13.已知的定义域为,那么a的取值范围为_________14.幂函数的图象经过点,则________15.函数的定义域是______________.16.函数的单调递增区间为__________三、解答题(本大题共6小题,共70分)17.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求值.18.(1)已知角的终边过点,且,求的值;(2)已知,,且,求.19.已知为锐角,(1)求的值;(2)求的值20.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.21.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号的电动汽车在一段国道上进行测试,汽车行驶速度低于80km/h.经多次测试得到该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的数据如下表所示:为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,且,,()(1)当时,请选出你认为最符合表格中所列数据的函数模型,并说明理由;(2)求出(1)中所选函数模型的函数解析式;(3)根据(2)中所得函数解析式,求解如下问题:现有一辆同型号电动汽车从地驶到地,前一段是200km的国道,后一段是60km的高速路(汽车行驶速度不低于80km/h),若高速路上该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的关系满足,则如何行使才能使得总耗电量最少,最少为多少?22.化简求值:(1)已知都为锐角,,求的值;(2).

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据两点求解直线的斜率,然后利用斜率求解倾斜角.【详解】因为直线过点,,所以直线的斜率为;所以直线的倾斜角是30°,故选:A.2、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键3、D【解析】与终边相同的角是.当1时,故选D4、C【解析】依题意设,根据,解得,所以选.5、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.6、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理7、D【解析】根据正余弦函数的单调性,即可得到结果.【详解】由正弦函数的单调性可知,函数在上单调递增;由余弦函数的单调性可知,函数在上单调递增;所以函数与在下列区间内同为单调递增的是.故选:D.8、C【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为.故选C.9、B【解析】先利用累加法求出,再利用裂项相消法求解.【详解】∵,∴,又,∴∴,∴数列的前100项的和为:故选B【点睛】本题主要考查数列通项的求法,考查裂项相消求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.11、A【解析】根据向量投影的几何意义得到结果即可.【详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【点睛】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).12、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因,所以平面内存在直线,若,则,且,所以,故D正确.故选:D二、填空题(本大题共4小题,共20分)13、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:14、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:15、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.16、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.三、解答题(本大题共6小题,共70分)17、(1)f(x)的最大值是4(2)-【解析】(1)先由向量数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【点睛】本题考查平面向量的综合题18、(1);(2)【解析】(1)利用三角函数的定义求出,再根据三角函数的定义求出、即可得解;(2)根据同角三角函数的基本关系求出、,再根据两角差的余弦公式求出,即可得解;【详解】解:(1)因为角的终边过点,且,所以,解得,即,所以,所以,,所以;(2)因为,,所以,又,,所以,所以所以,因为所以19、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.20、(1);(2)【解析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.21、(1),理由见解析(2)(3)当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为【解析】(1)由表格数据判断合适的函数关系,(2)代入数据列方程组求解,(3)分别表示在国道与高速路上的耗电量,由单调性求其取最小值时的速度.【小问1详解】若选,则当时,该函数无意义,不合题意若选,显然该函数是减函数,这与矛看,不合题意故选择【小问2详解】选择,由表中数据得,解得,所以当时,【小问3详解】由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论