2023届山东省青岛市即墨区重点高中高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2023届山东省青岛市即墨区重点高中高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2023届山东省青岛市即墨区重点高中高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2023届山东省青岛市即墨区重点高中高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2023届山东省青岛市即墨区重点高中高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知幂函数在上单调递减,则的值为A. B.C.或 D.2.已知,若函数在上为减函数,且函数在上有最大值,则a的取值范围为()A. B.C. D.3.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20244.已知实数,,且,则的最小值为()A. B.C. D.5.函数的图象的相邻两支截直线所得的线段长为,则的值是()A. B.C. D.6.已知函数和,则下列结论正确的是A.两个函数的图象关于点成中心对称图形B.两个函数的图象关于直线成轴对称图形C.两个函数的最小正周期相同D.两个函数在区间上都是单调增函数7.下列不等关系中正确的是()A. B.C. D.8.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.9.已知,且,则A. B.C. D.10.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台11.的值是A. B.C. D.12.已知全集,集合,则A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.的定义域为________________14.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)15.正方体中,分别是,的中点,则直线与所成角的余弦值是_______.16.已知,则的值是________,的值是________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.18.已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:012300.71.63.3为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用19.已知,,(1)值;(2)的值.20.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.21.已知直线:的倾斜角为(1)求a;(2)若直线与直线平行,且在y轴上的截距为-2,求直线与直线的交点坐标22.根据下列条件,求直线的方程(1)求与直线3x+4y+1=0平行,且过点(1,2)的直线l的方程.(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由函数为幂函数得,即,解得或.当时,,符合题意.当时,,不和题意综上.选A2、A【解析】由复合函数在上的单调性可构造不等式求得,结合已知可知;当时,,若,可知无最大值;若,可得到,解不等式,与的范围结合可求得结果.【详解】在上为减函数,解得:当时,,此时当,时,在上单调递增无最大值,不合题意当,时,在上单调递减若在上有最大值,解得:,又故选【点睛】本题考查根据复合函数单调性求解参数范围、根据分段函数有最值求解参数范围的问题;关键是能够通过分类讨论的方式得到处于不同范围时在区间内的单调性,进而根据函数有最值构造不等式;易错点是忽略对数真数大于零的要求,造成范围求解错误.3、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:4、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.5、D【解析】由正切函数的性质,可以得到函数的周期,进而可以求出解析式,然后求出即可【详解】由题意知函数的周期为,则,所以,则.故选D.【点睛】本题考查了正切函数的性质,属于基础题6、D【解析】由题意得选项A中,由于的图象关于点成中心对称,的图象不关于点成中心对称,故A不正确选项B中,由于函数的图象关于点成中心对称,的图象关于直线成轴对称图形,故B不正确选项C中,由于的周期为2π,的周期为π,故C不正确选项D中,两个函数在区间上都是单调递增函数,故D正确选D7、C【解析】对于A,作差变形,借助对数函数单调性判断;对于C,利用均值不等式计算即可判断;对于B,D,根据不等式的性质及对数函数单调性判断作答.【详解】对于A,,而函数在单调递增,显然,则,A不正确;对于B,因为,所以,故,B不正确;对于C,显然,,,C正确;对于D,因为,所以,即,D不正确.故选:C8、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D9、A【解析】由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系与二倍角公式,求得的值【详解】解:∵tan(α),则tanα,∵tanα,sin2α+cos2α=1,α∈(,0),可得sinα∴2sinα=2()故选A点睛】本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题10、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.11、B【解析】由余弦函数的二倍角公式把等价转化为,再由诱导公式进一步简化为,由此能求出结果详解】,故选B【点睛】本题考查余弦函数的二倍角公式的应用,解题时要认真审题,仔细解答,注意诱导公式的灵活运用,属于基础题.12、C【解析】由集合,根据补集和并集定义即可求解.【详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【点睛】本题考查了补集和并集的简单运算,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.14、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.15、【解析】结合异面直线所成角的找法,找出角,构造三角形,计算余弦值,即可【详解】连接,而,所以直线与所成角即为,设正方体边长为1,则,所以余弦值为【点睛】考查了异面直线所成角的计算方法,关键得出直线与所成角即为,难度中等16、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.18、(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.【解析】(1)对题中所给的三个函【解析】对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.【详解】(1)若选择函数模型,则该函数在上为单调减函数,这与试验数据相矛盾,所以不选择该函数模型若选择函数模型,须,这与试验数据在时有意义矛盾,所以不选择该函数模型从而只能选择函数模型,由试验数据得,,即,解得故所求函数解析式为:(2)设超级快艇在AB段的航行费用为y(万元),则所需时间(小时),其中,结合(1)知,所以当时,答:当该超级快艇以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元【点睛】该题考查的是有关函数的应用题,涉及到的知识点有函数模型的正确选择,等量关系式的建立,配方法求二次式的最值,属于简单题目.19、(1)(2)【解析】(1)根据二倍角公式,求出,即可求解;(2)由两角和的正切公式,即可求出结论.【详解】(1).=..=(2)====【点睛】本题考查同角间的三角函数关系以及恒等变换求值,应用平方关系要注意角的范围,属于基础题.20、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化为恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知在其定义域上单调递增.所以在上的最大值为,对任意恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用.21、(1)-1;(2)(4,2).【解析】(1)根据倾斜角和斜率的关系可得,即可得a值.(2)由直线平行有直线为,联立直线方程求交点坐标即可.【小问1详解】因为直线的斜率为,即,故【小问2详解】依题意,直线的方程为将代入,得,故所求交点的(4,2)22、(1)3x+4y-11=0(2)3x-y+2=0【解析】(1)设与直线平行的直线为,把点代入,解得即可;(2)由,解得两直线的交点坐标为,结合所求直线垂直于直线,可得所求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论