广东省深圳市福田区耀华实验学校2022年高一上数学期末统考模拟试题含解析_第1页
广东省深圳市福田区耀华实验学校2022年高一上数学期末统考模拟试题含解析_第2页
广东省深圳市福田区耀华实验学校2022年高一上数学期末统考模拟试题含解析_第3页
广东省深圳市福田区耀华实验学校2022年高一上数学期末统考模拟试题含解析_第4页
广东省深圳市福田区耀华实验学校2022年高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,,,则,,的大小关系是()A. B.C. D.2.设θ为锐角,,则cosθ=()A. B.C. D.3.某组合体的三视图如下,则它的体积是A. B.C. D.4.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,5.已知全集,集合1,2,3,,,则A.1, B.C. D.3,6.函数的零点所在的区间为()A.(,1) B.(1,2)C. D.7.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.18.如果角的终边经过点,则()A. B.C. D.9.已知函数,则的值为A. B.C. D.10.如果函数是定义在上的奇函数,当时,函数的图象如图所示,那么不等式的解集是A. B.C. D.11.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.12.已知,,,则a、b、c的大小顺序为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,则____________.(可用对数符号作答)14.已知,,,则,,的大小关系是______.(用“”连接)15.已知,则的最大值为_______16.直线l与平面α所成角为60°,l∩α=A,则m与l所成角的取值范围是_______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知为锐角,(1)求的值;(2)求的值18.已知函数的图象在直线的下方且无限接近直线.(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;(2)判断函数的奇偶性并用定义证明;(3)求函数的值域.19.记函数=的定义域为A,g(x)=(a<1)的定义域为B.(1)求A;(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.20.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值21.如图,某园林单位准备绿化一块直径为BC的半圆形空地,外的地方种草,的内接正方形PQRS为一水池,其余的地方种花.若,,设的面积为,正方形PQRS的面积为.(1)用a,表示和;(2)当a为定值,变化时,求的最小值,及此时的值.22.已经函数(Ⅰ)函数的图象可由函数的图象经过怎样变化得出?(Ⅱ)求函数的最小值,并求使用取得最小值的的集合

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】分别求出的范围,然后再比较的大小.【详解】,,,,,,并且,,综上可知故选:B【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.2、D【解析】为锐角,故选3、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式4、B【解析】根据相等函数的判定方法,逐项判断,即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.5、C【解析】可求出集合B,然后进行交集的运算,即可求解,得到答案【详解】由题意,可得集合,又由,所以故选C【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间.【详解】解:在上为单调递增函数,又,所以的零点所在的区间为.故选:D.7、D【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D8、D【解析】由三角函数的定义可求得的值.【详解】由三角函数的定义可得.故选:D.【点睛】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.9、C【解析】由,故选C10、B【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.考点:奇函数的性质,余弦函数的图象,数形结合思想.11、C【解析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质12、D【解析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小详解】由,故,因为,所以,因为,所以,所以,即故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据对数运算法则得到,再根据对数运算法则及三角函数弦化切进行计算.【详解】∵,∴,又,.故答案为:14、【解析】结合指数函数、对数函数的知识确定正确答案.【详解】,,所以故答案为:15、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:16、【解析】根据直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,直线l与平面α所成角的范围,即可求出结果【详解】由于直线l与平面α所成角为60°,直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,而异面直线所成角的范围是(0,],直线m在平面α内,且与直线l异面,故m与l所成角的取值范围是.故答案为【点睛】本题考查直线和平面所成的角的定义和范围,判断直线与平面所成角是直线与平面α内所有直线成的角中最小的一个,是解题的关键三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.18、(1)函数在上单调递增,(2)奇函数,证明见解析(3)【解析】(1)根据函数的单调性情况直接判断;(2)根据奇偶性的定义直接判断;(3)由奇偶性直接判断值域.【小问1详解】因为随着增大,减小,即增大,故随增大而增大,所以函数在上单调递增.由的图象在直线下方,且无限接近直线,得,所以函数的解析式.【小问2详解】由(1)得,整理得,函数定义域关于原点对称,,所以函数是奇函数.小问3详解】方法一:由(1)知,由(2)知,函数图象关于原点中心对称,故,所以函数的值域为.方法二:由,得,得,得,得,得,所以函数的值域为.19、(1)(2)【解析】(1)第一步要使有意义,第二步由按分式不等式的解法求求A;(2)第一步使有意义求集合B,第二步真数大于零求解然后按照BA,求解.【小问1详解】由得:,解得或,即;【小问2详解】由得:由得BA或即或,而或故当BA时,实数的取值范围是.20、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,结合作差法、分类讨论思想求的单调性.(3)由题设得且,结合(2)有在上递减,结合函数的区间值域,求参数a、n即可.【小问1详解】由题设有,可得函数定义域为,,所以为奇函数.【小问2详解】令,则,又,则,当时,,即,则在上递增.当时,,即,则在上递减.【小问3详解】由,则,即,结合(2)知:在上递减且值域为,要使在值域是,则且,即,所以,又,故.综上,,【点睛】关键点点睛:第三问,注意,即有在上递减,再根据区间值域求参数.21、(1);(2)当时,的值最小,最小值为【解析】(1)利用已知条件,根据锐角三角形中正余弦的利用,即可表示出和;(2)根据题意,将表示为的函数,利用倍角公式对函数进行转化,利用换元法,借助对勾函数的单调性,从而求得最小值.【详解】(1)在中,,所以;设正方形的边长为x,则,,由,得,解得;所以;(2),令,因为,所以,则,所以;设,根据对勾函数的单调性可知,在上单调递减,因此当时,有最小值,此时,解得;所以当时,的值最小,最小值为.【点睛】本题考查倍角公式的使用,三角函数在锐角三角形中的应用,以及利用对勾函数的单调性求函数的最值,涉及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论