




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣32.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=03.使得成立的一个充分不必要条件是()A. B.C. D.4.设四边形为平行四边形,,若点满足,,则A. B.C. D.5.已知,,则()A. B.C. D.6.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.27.已知圆C:x2+y2+2x=0与过点A(1,0)的直线l有公共点,则直线l斜率k的取值范围是()A. B.C. D.8.已知函数,则函数的最小正周期为A. B.C. D.9.若动点.分别在直线和上移动,则线段的中点到原点的距离的最小值为()A. B.C. D.10.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-4二、填空题:本大题共6小题,每小题5分,共30分。11.已知任何一个正实数都可以表示成,则的取值范围是________________;的位数是________________.(参考数据)12.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.13.若“”是“”的必要不充分条件,则实数的取值范围为___________.14.函数的最大值为().15.若函数(,且)的图象经过点,则___________.16.函数(且)的定义域为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).18.对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并19.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值20.已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)若函数,求函数零点.21.已知.(1)若在第二象限,求的值;(2)已知,且,求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】等价于二次函数的最大值不小于零,即可求出答案.【详解】设,,使得不等式成立,须,即,或,解得.故选:D【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.2、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解3、C【解析】由不等式、正弦函数、指数函数、对数函数的性质,结合充分、必要性的定义判断选项条件与已知条件的关系.【详解】A:不一定有不成立,而有成立,故为必要不充分条件;B:不一定成立,而也不一定有,故为既不充分也不必要条件;C:必有成立,当不一定有成立,故为充分不必要条件;D:必有成立,同时必有,故为充要条件.故选:C.4、D【解析】令,则,,故选D5、D【解析】由同角三角函数的平方关系计算即可得出结果.【详解】因为,,,,所以.故选:D6、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.7、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r=1,设直线方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圆心到直线的距离d1,解得k故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题8、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得9、C【解析】先分析出M的轨迹,再求到原点的距离的最小值.【详解】由题意可知:M点的轨迹为平行于直线和且到、距离相等的直线l,故其方程为:,故到原点的距离的最小值为.故选:C【点睛】解析几何中与动点有关的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数求最值.10、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解.【详解】因为,所以,由,故知,共有31位.故答案为:;3112、(1)(3)【解析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【点睛】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.13、##【解析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.14、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.15、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.16、【解析】根据对数的性质有,即可求函数的定义域.【详解】由题设,,可得,即函数的定义域为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(t≥0)(2)【解析】(1)根据题意,建立函数关系式;(2)直接解方程即可求解.【小问1详解】盛水筒M从点P0运动到点P时所经过的时间为t,则以Ox为始边,OP为终边的角为,故P点的纵坐标为,则点离水面的高度,(t≥0).【小问2详解】令,得,得,,得,,因为点P第一次到达最高点,所以,所以.18、(1)46(2)n的最大值为14【解析】(1)对于集合P7,有n=7.当k=4时,Pn={|m∈In,k∈In}中有3个数(1,2,3)与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数为7×7﹣3=46(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.否则,设A和B为两个不相交的稀疏集,使A∪B=Pn⊇In不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都稀疏集,且A1∪B1=I14当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9}中的数的分母都是无理数,它与Pn中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14综上可得,n的最大值为1419、(1)或(2)【解析】(1)由可设,再由可得答案(2)由数量积的定义可得,代入即可得答案【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与的夹角为,∴,∴【点睛】本题考查向量的基本运算,属于简单题20、(1)(2)为奇函数(3)【解析】(1)要使函数有意义,必须满足,从而得到定义域;(2)利用奇偶性定义判断奇偶性;(3)函数的零点即方程的根.即的根,又为奇函数,所以.易证:在定义域上为增函数,∴由得,从而解得函数的零点.试题解析:(1)要使函数有意义,必须满足,∴,因此,的定义域为.(2)函数为奇函数.∵的定义域为,对内的任意有:,所以,为奇函数.(3)函数的零点即方程的根.即的根,又为奇函数,所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定义域上为增函数,∴由得解得或,验证当时,不符
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托加工合同模板3篇
- 代理投票授权3篇
- 二手商业店买卖合同样本3篇
- 劳动合同解除决定通知协议决定3篇
- 户口迁移的严肃承诺3篇
- 保密性托管服务协议3篇
- 废品交易协议3篇
- 代为办理房产交易的委托书3篇
- 煤炭批发区域市场差异考核试卷
- 老年人辅助包装考核试卷
- 湖北省武汉市2025届高三下学期四月调研考试(二模)数学试题 含解析
- 高二下学期《家校携手凝共识齐心协力创辉煌》家长会
- 2025年人教版七年级下册英语全册教学设计
- 2024年大模型+RAG最佳实践报告
- 2024-2025学年人教版数学八年级下册期中检测卷(含答案)
- 教育的起源和古代东方文明古国的教育
- 有机化学6章对映异构-课件
- 抗菌药物使用强度(DDD)解析与控制
- T∕CACM 1064-2018 针刀医学临床 通用要求
- 招聘求职简历制作表格模板可编辑下载 精品简历模板 标准表格单页02
- 凑十法加法竖式运算(可打印)
评论
0/150
提交评论