




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.2.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.3.已知函数,则下列结论正确的是()A.B.的值域为C.在上单调递减D.的图象关于点对称4.已知集合,,则A. B.C. D.5.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.106.已知,,则下列不等式中恒成立的是()A. B.C. D.7.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.8.函数,则f(log23)=()A.3 B.6C.12 D.249.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.210.正方体ABCD-A1B1C1D1中,异面直线所成的角等于()A.30° B.45°C.60° D.90°11.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°12.当时,若,则的值为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.在矩形ABCD中,O是对角线的交点,若,则=________.(用表示)14.在三棱锥中,,,,则三棱锥的外接球的表面积为________.15.函数的零点为______16.已知,则的值是________,的值是________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)判断的奇偶性,并证明;(2)判断的单调性,并用定义加以证明;(3)若,求实数的取值范围.18.已知全集,,(Ⅰ)求;(Ⅱ)求19.已知函数,(1)求函数的最大值及取得最大值时的值;(2)若方程在上的解为,,求的值20.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.21.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围22.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.2、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.3、C【解析】利用分段函数化简函数解析式,再利用函数图像和性质,从而得出结论.【详解】故函数的周期为,即,故排除A,显然函数的值域为,故排除B,在上,函数为单调递减,故C正确,根据函数的图像特征,可知图像不关于点对称,故排除D.故选:C.【点睛】本题解题时主要利用分段函数化简函数的解析式,在化简的过程中注意函数的定义域,以及充分利用函数的图像和性质解题.4、A【解析】由得,所以;由得,所以.所以.选A5、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.6、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.7、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.8、B【解析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【详解】由题意,,所以.故选:B.9、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.10、C【解析】在正方体中,连接,则,则异面直线和所成的角就是相交直线和所成的角,即,在等边三角形中,,故选C11、A【解析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A12、A【解析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果.详解:因为,所以,所以,因为,所以,所以,所以,所以答案是,故选A.点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据=,利用向量的线性运算转化即可.【详解】在矩形ABCD中,因为O是对角线的交点,所以=,故答案为:.【点睛】本题考查平面向量的线性运算,较为容易.14、【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.15、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题16、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)奇函数,证明见解析(2)单调递增函数,证明见解析(3)【解析】(1)根据奇偶性的定义证明可得答案;(2)根据单调性定义,通过取值作差判断符号即可证明;(3)根据函数的单调性得,解不等式即可【小问1详解】证明:,,所以为奇函数.【小问2详解】函数在上为增函数.证明:函数的定义域为,,任取,且,则,∵,∴,∴,∴,即,∴∴函数在上为增函数.【小问3详解】因为,所以,由(2)知函数在上为增函数,所以,,∴的取值范围是.18、(Ⅰ)(Ⅱ)【解析】两集合A,B的交集为两集合的相同的元素构成的集合,并集为两集合所有的元素构成的集合,补集为全集中除去集合中的元素,剩余的元素构成的集合试题解析:(Ⅰ)(Ⅱ)考点:集合的交并补运算19、(1)当时,函数取得最大值为;(2).【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值;(2)求出函数的对称轴,得到和的关系,利用诱导公式化简可得答案.【详解】(1),令,可得,对称轴为,开口向下,所以在上单调递增,所以当,即,时,,所以当时,函数取得最大值为;(2)令,可得,当时,是的对称轴,因为方程在上的解为,,,,且,所以,所以,所以,所以的值为.20、(1).(2),的面积.【解析】(1)由可求出,再利用展开即可得出答案;(2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可.【详解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面积.【点睛】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题.21、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是22、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年助理广告师考试考前准备试题及答案
- 2024年纺织品检验员考试技巧与策略试题及答案
- 生理病理考试题及答案
- 低血糖的相关试题及答案
- 市场调研对广告设计的重要性试题及答案
- 2024广告设计师考试创意驱动分析试题及答案
- 2024年纺织工程师考试的重要记录与试题及答案
- 2024年商业美术设计师能力测评试题及答案
- 2024年考生必知的纺织品设计试题及答案
- 2024年纺织品设计师证书考试技巧试题及答案
- 新课标下的高中化学大单元教学设计2022.12
- 第六章《实数》教材分析定稿课件
- 快餐店管理系统的设计与实现毕业设计
- 电动给水泵技术规范
- 三笔字训练教程课件
- 船舶关键性设备和系统检测要点(甲板部)
- (完整word)2019注册消防工程师继续教育三科试习题及答案
- 钢筋加工棚搭设验收表
- 蓝色简约公安警察工作汇报PPT模板课件
- 汽车维修技能大赛开幕式致辞
- 中心试验室运行管理实施方案
评论
0/150
提交评论