河北省宣化第一中学2022-2023学年高一数学第一学期期末监测试题含解析_第1页
河北省宣化第一中学2022-2023学年高一数学第一学期期末监测试题含解析_第2页
河北省宣化第一中学2022-2023学年高一数学第一学期期末监测试题含解析_第3页
河北省宣化第一中学2022-2023学年高一数学第一学期期末监测试题含解析_第4页
河北省宣化第一中学2022-2023学年高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13/132022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.直线的倾斜角为()A. B.30°C.60° D.120°2.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则3.若存在正数x使成立,则a的取值范围是A. B.C. D.4.命题“”为真命题的一个充分不必要条件是()A. B.C. D.5.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°6.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.7.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.698.已知函数在上具有单调性,则k的取值范围是()A. B.C. D.9.将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A. B.C. D.10.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.当时,函数的值总大于,则的取值范围是________12.函数的定义域为_________13.已知幂函数在为增函数,则实数的值为___________.14.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________15.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数定义在上且满足下列两个条件:①对任意都有;②当时,有,(1)求,并证明函数在上是奇函数;(2)验证函数是否满足这些条件;(3)若,试求函数的零点.17.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.18.已知函数,其中.(1)求的定义域;(2)当时,求的最小值.19.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.20.如图所示,在中,已知,,.(1)求的模;(2)若,,求的值.21.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据直线的斜率即可得倾斜角.【详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.2、D【解析】由不等式性质依次判断各个选项即可.【详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.3、D【解析】根据题意,分析可得,设,利用函数的单调性与最值,即可求解,得到答案【详解】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选D【点睛】本题主要考查了函数单调性的应用,以及不等式的有解问题,其中解答中合理把不等式的有解问题转化为函数的单调性与最值问题是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题4、D【解析】先确定“”为真命题时的范围,进而找到对应选项.【详解】“”为真命题,可得,因为,故选:D.5、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A6、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.7、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B8、C【解析】由函数,求得对称轴的方程为,结合题意,得到或,即可求解.【详解】由题意,函数,可得对称轴的方程为,要使得函数在上具有单调性,所以或,解得或故选:C.9、C【解析】函数,将其图像向右平移个单位后得到∵这个图像关于直线对称∴,即∴当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,12、【解析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【点睛】本题考查了根据函数的解析式求定义域的应用问题,是基础题目13、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:414、【解析】先求得,然后利用列举法求得正确答案.【详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:15、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析;(2)见解析;(3).【解析】令代入即可求得,令,则可得,即可证明结论根据函数的解析式求出定义域满足条件,再根据对数的运算性质,计算与并进行比较,根据对数函数的性质判断当时,的符号,即可得证用定义法先证明函数的单调性,然后转化函数的零点为,利用条件进行求解【详解】(1)对条件中的,令得.再令可得所以在(-1,1)是奇函数.(2)由可得,其定义域为(-1,1),当时,∴∴故函数是满足这些条件.(3)设,则,,由条件②知,从而有,即故上单调递减,由奇函数性质可知,在(0,1)上仍是单调减函数.原方程即为,在(-1,1)上单调又故原方程的解为.【点睛】本题考查的知识点是函数的奇偶性与函数的单调性,考查了对数函数的图象和性质,解题的关键是熟练掌握抽象函数的处理方式,将抽象问题具体化,有一定的难度和计算量17、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【详解】(1)∵,∴,∴..∴∴,∴;(2)由(1)知,由,可得且,解得.综上所述:的取值范围是18、(1)(2).【解析】(1)利用对数的真数为正数求出函数的定义域为.(2)在定义域上把化为,利用二次函数求出,从而求出函数的最小值为.解析:(1)欲使函数有意义,则有,解得,则函数的定义域为.(2)因为,所以,配方得到.因为,故,所以(当时取等号),即的最小值为.点睛:求与对数有关的函数的定义域,应该考虑不变形时自变量满足的条件.19、(1)奇函数(2)在上单调递增(3)【解析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所以不等式的解集为20、(1)(2)【解析】(1)根据向量数量积定义可得,再根据向量加法几何意义以及模性质可得结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论