山西省2022-2023学年高一数学第一学期期末统考试题含解析_第1页
山西省2022-2023学年高一数学第一学期期末统考试题含解析_第2页
山西省2022-2023学年高一数学第一学期期末统考试题含解析_第3页
山西省2022-2023学年高一数学第一学期期末统考试题含解析_第4页
山西省2022-2023学年高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13/132022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.已知,,,则的大小关系为()A. B.C. D.2.已知,,,,则A. B.C. D.3.幂函数,当时为减函数,则实数的值为A.或2 B.C. D.4.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个5.已知,,则下列不等式正确的是()A. B.C. D.6.根据表格中的数据,可以判定函数的一个零点所在的区间为A. B.C. D.7.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.8.已知,,,则的大小关系A. B.C. D.9.对于实数x,“0<x<1”是“x<2”的()条件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要10.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A. B.C. D.11.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾束,中等稻禾束,下等稻禾束,各等稻禾总数都不足斗.如果将束上等稻禾加上束中等稻禾,或者将束中等稻禾加上束下等稻禾,或者将束下等稻禾加上束上等稻禾,则刚好都满斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的束上等稻禾是多少斗?()A. B.C. D.12.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.二、填空题(本大题共4小题,共20分)13.已知角的终边过点(1,-2),则________14.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________15.若点在角终边上,则的值为_____16.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.三、解答题(本大题共6小题,共70分)17.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围18.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”概率;(3)事件“点数之和等于或大于11”的概率.19.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.20.求值:(1);(2)21.问题:是否存在二次函数同时满足下列条件:,的最大值为4,______?若存在,求出的解析式;若不存在,请说明理由.在①对任意都成立,②函数的图像关于轴对称,③函数的单调递减区间是这三个条件中任选一个,补充在上面问题中作答.注:如果选择多个条件分别解答,按第一个解答计分.22.某学校有1200名学生,随机抽出300名进行调查研究,调查者设计了一个随机化装置,这是一个装有大小、形状和质量完全相同的10个红球,10个绿球和10个白球的袋子.调查中有两个问题:问题1:你的阳历生日月份是不是奇数?问题2:你是否抽烟?每个被调查者随机从袋中摸出1个球(摸出后再放回袋中).若摸到红球就如实回答第一个问题,若摸到绿球,则不回答任何问题;若摸到白球,则如实回答第二个问题.所有回答“是”的调查者只需往一个盒子中放一个小石子,回答“否”的被调查者什么也不用做.最后收集回来53个小石子,估计该学校吸烟的人数有多少?

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.2、C【解析】分别求出的值再带入即可【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题3、C【解析】∵为幂函数,∴,即.解得:或.当时,,在上为减函数;当时,,在上为常数函数(舍去),∴使幂函数为上的减函数的实数的值.故选C.考点:幂函数的性质.4、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B5、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.6、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,

这个c也就是方程f(x)=0的根.由此可判断根所在区间.7、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D8、D【解析】利用指数函数与对数函数的单调性即可得出【详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题9、D【解析】从充分性和必要性的定义,结合题意,即可容易判断.【详解】若,则一定有,故充分性满足;若,不一定有,例如,满足,但不满足,故必要性不满足;故“0<x<1”是“x<2”的充分不必要条件.故选:.10、B【解析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.故选:B11、D【解析】设出未知数,根据题意列出方程即可解出.【详解】设束上等稻禾是斗,束中等稻禾是斗,束下等稻禾是斗,则由题可得,解得,所以束上等稻禾是斗.故选:D.12、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且二、填空题(本大题共4小题,共20分)13、【解析】由三角函数的定义以及诱导公式求解即可.【详解】的终边过点(1,-2),故答案为:14、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).15、5【解析】由三角函数定义得16、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题三、解答题(本大题共6小题,共70分)17、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={x|-1<x<5}∴A∩B={x|1≤x<5},(CUA)∪(CUB)={x|x<1或x≥5}(Ⅱ)∵集合C={x|m+1<x<2m-1},B∩C=C,∴C⊆B,当C=∅时,解得当C≠∅时,由C⊆B得,解得:2<m≤3综上所述:m的取值范围是(-∞,3]【点睛】本题考查交集、补集、并集的求法,考查实数的取值范围的求法,考查交集、补集、并集集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题18、(1);(2);(3)【解析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率;(2)根据所有的基本事件的个数,求所求的“点数之和小于”的基本事件的个数,最后利用概率计算公式求解即可;(3)根据所有的基本事件的个数,求所求的“点数之和等于或大于”的基本事件的个数,最后利用概率计算公式求解即可试题解析:抛掷两颗骰子,总的事件有个.(1)记“两颗骰子点数相同”为事件,则事件有6个基本事件,∴(2)记“点数之和小于7”事件,则事件有15个基本事件,∴(3)记“点数之和等于或大于11”为事件,则事件有3个基本事件,∴.考点:古典概型.19、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,即可得到方程,解得即可;(2)首先判断函数的单调性,再根据定义法证明,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)根据函数的奇偶性与单调性将函数不等式转化为自变量的不等式,再解得即可;【小问1详解】解:因为是定义在上的奇函数,所以,即,即,所以,即;解得,所以【小问2详解】解:函数是上的减函数证明:在上任取,,设,因为,所以,则,所以即所以在上单调递减【小问3详解】解:因为是定义在上奇函数所以可化为又在上单调递减,所以解得20、(1)(2)【解析】(1)利用指数幂计算公式化简求值;(2)利用对数计算公式换件求值.【小问1详解】【小问2详解】.21、若选择①,;若选择②,;若选择③,【解析】由可得,由所选的条件可得的对称轴,再由的最大值为4,可得关于的方程,求解即可.【详解】解:由,可得:,;若选择①,对任意都成立,故的对称轴为,即,又的最大值为4,且,解得:,故;若选择②,函数图像关于轴对称,故的对称轴为,即,又的最大值为4,且,解得:,故;若选择③,函数的单调递减区间是,故的对称轴为,即,又的最大值为4,且,解得:,故.22、36【解析】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是,从而可得回答各个问题以及不回答问题的人数,进而可得回答第一个问题是“是”的人数,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论