版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WorkingPapers|9913.12.2022TheRoleofFirmDynamicsintheGreenTransitionCARBONPRODUCTIVITYDECOMPOSITIONINFINNISHMANUFACTURINGAbstractThispaperinvestigatestheimportanceoffirmdynam-ics,includingentryandexitandtheallocationofcar-bonemissionsacrossfirms,onthegreentransition.Usingthe2000–2019firm-levelregisterdataongreen-housegasemissionsmatchedwiththeFinancialState-NataliaKuosmanenmentdataintheFinnishmanufacturingsector,weex-EtlaEconomicResearch,Finlandaminethesourcesofcarbon-productivitygrowthandnatalia.kuosmanen@etla.fiassesstherelativecontributionsofstructuralchangeandfirmdynamics.WefindthatcontinuingfirmswereTerhiMaczulskij(Correspondingauthor)themaindriversofcarbonproductivitygrowthwhere-EtlaEconomicResearch,FinlandandasthecontributionofenteringandexitingfirmswasIZAInstituteofLaborEconomics,Germanynegative.Inaddition,theallocationofemissionsacrossterhi.maczulskij@etla.fifirmsseemstobeinefficient;itsimpactoncarbonpro-ductivitygrowthwasnegativeoverthestudyperiod.Moreover,wefindthatthereisapositiverelationshipSuggestedcitation:betweenlabor-intensivefirmsandcarbonproductivi-Kuosmanen,Natalia&Maczulskij,Terhitybutthatfirmswithalargermarketsharetendtobe(13.12.2022).“TheRoleofFirmDheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturing”.ETLAWorkingPapersNo99.http://pub.etla.fi/ETLA-Working-Papers-99.pdfETLAWorkingPapers|No99TiivistelmäRakennemuutosjavihreäsiirtymä:hiilituottavuudenosatekijätSuomenteollisuudessaTässäartikkelissatutkitaanteollisuudenrakennemuu-toksenjayritystenuusiutumisenyhteyttähiilituottavuu-denkasvussa.Tutkimuksessahyödynnetäänteollisuu-denyritystasontietojakasvihuonekaasupäästöistäjatilinpäätöstiedoistavuosille2000–2019.Menetelmänäkäytetäänniinkutsuttuahajotelmamenetelmää,jonkaavullahiilituottavuudenkehitysvoidaanjakaakolmeenosaan:keskimääräiseenjatkavienyrityksienhiilituot-tavuudenmuutokseen,uusienjapoistuvienyritystenkontribuutioonsekäkasvihuonekaasupäästöjenkoh-dentumiseenyritystenkesken.Tulostenperusteellatoi-mintaansajatkaneetyrityksetolivathiilituottavuudenkasvuntärkeinveturi,kuntaasosatehokkaimmistayri-tyksistäolijostainsyystäkannattamattomiajapoistuimarkkinoilta.Lisäksikasvihuonekaasupäästöjenkoh-dentuminenyritystenkeskennäyttääolevantehotonta.Tämätarkoittaasitä,ettäpäästötkohdentuivatsaastut-tavimpiinyrityksiinjapäästöjenvähentäminentapahtuijoennestäänvähäpäästöistenyritystentoimesta.Lisäksihiilituottavuuskulkeekäsikädessätyöntuottavuudenkanssa,muttasuhdekilpailukykyynonpäinvastainen.
Ph.D.NataliaKuosmanenisaChiefResearchScientistatETLAEconomicResearch.Ph.D.TerhiMaczulskijisaChiefResearchScientistatETLAEconomicResearchandaResearchFellowatIZA.MMTNataliaKuosmanenonElinkeinoelämäntutkimuslaitoksentutkimuspäällikkö.KTT,FM,dosenttiTerhiMaczulskijonElinkeino-elämäntutkimuslaitoksentutkimuspäällikkösekäIZA:nResearchFellow.Acknowledgements:Theauthorsgratefullyacknowl-edgefinancialsupportfromtheTTFoundation.DatausedintheempiricalapplicationofthispaperwereprovidedbyStatisticsFinland.Kiitokset:HaluammekiittäähankettarahoittanuttaTeollisuudenjaTyönantajainKeskusliiton(TT)-sääti-ötä.Keywords:Carbonproductivity,Decomposition,Firmdynamics,Firm-leveldata,ManufacturingAsiasanat:Hiilituottavuus,Hajotelmamenetelmä,Rakennemuutos,Yritystasonaineisto,TeollisuusJEL:D24,L60,Q542TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturingIntroductionAmajorcauseofclimatechangeisgreenhousegas(GHG)emissions(Solomon,2007).AccordingtotheGovernmentProgramme,Finlandaimstobecarbonneutralbyyear2035.1Further,thenewClimateChangeAct,whichcameintoforcein2022,hassetambitioustargetsforreducingemissionsby80%by2040,comparedtothelevelsin1990(MinistryoftheEnvironment,2022).Tomeetitscarbonneutralitygoals,FinlandmuststrengthenitseffortstofightclimatechangeandreduceCO2emissions.Therefore,itiscrucialtounderstandthedrivingforcesbehindtheemissionchanges.ThecontributionofthemanufacturingsectortoFinland’stotalGHGemissionswas22%in2020(StatisticsFinland,2022).Figure1depictstheGHGemissionsgeneratedbythemanufacturingsectorbetween2000and2019.Althoughthissectorisresponsibleforthegreatmajorityoftotalemissionsatthenationallevel,ithasbeenabletodecreaseitsemissionsbyapproximately2%annuallybetween2000and2019.Theemissionlevelsremainedfairlyconstantbetween2000and2008:approximately18milliontonnesofcarbondioxideequivalent(CO2eq.)annually.Asthe2008globalfinancialcrisisturnedintoaneconomiccrisisintheeurozonecountries,industrialoutputdeclinedsharply,whichledtoasharpdeclineinemissions.Since2009,therehasbeencontinuousemissionreduction;althoughthisreductionispartlyduetothecontinuousdeclineinindustrialoutput,itisalsoduetoimprovedcarbonuse.[Figure1here]Accordingtotherequirementsofsustainabledevelopmentandeconomicgrowth,improvingcarbonproductivityisakeypathwaytoaddressingclimatechange(HeandSu,2011;LiandClimateNeutralFinland2035,MinistryoftheEnvironment:https://ym.fi/en/climate-neutral-finland-2035.3ETLAWorkingPapers|No99Wang,2019).CarbonproductivityisaperformancemeasuregenerallydefinedaseconomicoutputperunitofGHGemissions(e.g.,Sunetal.,2021;Murshedetal.,2022).2Recentworkonthisissuehasusedmostlymacro-leveldataoncountriesandregionstodecomposechangesincarbonproductivity(orinitsinverse,carbonintensity)intocomponentssuchasefficiencyandtechnologicalinnovation(seee.g.,MengandNiu,2012;HuandLiu,2016;Wangetal.,2018;Baietal.,2019).Thelackofsuitablemicrodatahaslimitedempiricalresearchinthisfield.Althoughthenumberoffirm-levelanalyseshasincreasedinrecentyears,theyarefocusedmostlyonexaminingthedeterminantsoffirm-levelfactorsandcarbonproductivitygrowth(e.g.,CaoandKarplus,2014;Jungetal.,2021;Bagchietal.,2022).Yet,nostudieshaveaddressedtheroleoffirmdynamicsinthegreentransitionor,morespecifically,theeffectsofstructuralchangeoncarbonproductivitygrowth.Thepurposeofourpaperistofillthisgap.Thisissueishighlyrelevantfordesigningeffectivepolicyresponsestoreachstringentclimategoals.Abetterunderstandingoftheunderlyingmechanismmayhelptoimproveenvironmental-policymeasuresandpromotethegreentransition.Inthispaper,weusetheoriginalfirm-levelemissionsdataonalltheFinnishmanufacturingfirmsthatbelongtotheEUEmissionsTradingSystem(EUETS).Toassesscarbonproductivityatthemicrolevelofthefirm,wematchtheadministrativeemissionsdatawiththefirm-levelFinancialStatementdatausinguniquefirm-identificationcodes.Notethatalltheinformationisregisterbased,whicheliminatestherisksofnonresponseandmeasurementerrorsassociatedwithself-reportedmeasures.Thedatainclude5,269firm-yearobservationsovertheperiod2000–2019.Weapplyastructuralchangedecompositionofcarbonproductivity,whichisbasedontheseminalstudybyOlleyandPakes(1996)andTheconceptofcarbonproductivity,definedastheratioofgrossdomesticproducttoemissionsatthenationallevel,wasfirstintroducedbyKayaandYokobori(1999).4TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturingitsextensionbyKuosmanenandKuosmanen(2021).3Thismethodenablesconsistentaggregationofproductivitymeasuresatthefirmleveltothoseattheindustrylevelandisapplicabletoboththelevelsandchangesofproductivityovertime.OurresultsshowaclearU-shapedtrendincarbonproductivitygrowthbetween2000and2019.Wefindthatthecontributionoffirmsthatcontinuedtooperateinthesameindustryispositiveovertheanalyzedperiodsandthatithasincreasedovertime.However,thecomponentsofentry/exitandtheallocationofemissionsacrossfirmsnearlycanceloutthepositiveeffectofnonswitchingcontinuingfirms.Thenegativecontributionofallocationimpliesthatemissionswereallocatedtowardlessproductivefirms.Itisalsoconcerningthatexitingfirmsexhibithighercarbonproductivitycomparedtosurvivingandnewenteringfirms.Moreover,wefindthatfirm-specificcharacteristics,suchasnumberofemployeesandlaborproductivity,arepositivelyrelatedtocarbonproductivitywhereasfirms’turnoverandmarketsharearenegativelyrelatedtocarbonproductivity.Therestofthepaperisorganizedasfollows.Section2situatesouranalysisinthecontextofrelevantliterature.Section3describesthedecompositionmethod.Section4presentsthedatausedinthestudy.Section5and6presentthedecompositionresultsandtheregressionresults,respectively,andSection7presentsourconclusions.Kuosmanen,Maczulskij,andKuosmanen(2022a)haveexaminedcarbonproductivitygrowthusingdataontheFinnishenergysector.5ETLAWorkingPapers|No99LiteraturereviewToagreatextent,currentresearchonthedeterminantsofcarbonproductivitygrowthisconductedusingmacro-leveldataoncountriesandregions.Forinstance,alargebodyofliteraturehasanalyzedtrendsincarbonproductivitygrowthacrosscountries(HeandSu,2011;Ekinsetal.,2012;Baietal.,2019;Xiaoetal.,2020)orinasingleeconomy,oftenaggregatedbyindustryorregionaldata(e.g.,LiandWang,2019).Thesestudiesdemonstratethatalthoughcarbonproductivityhasincreasedglobally,ithasincreasedmuchmoreindevelopedthanindevelopingcountries(HeandSu,2011;Baietal.,2019).Similarly,Xiaoetal.(2020)findthatconsumption-basedcarbonintensity(theinverseofcarbonproductivity)hasbeenhigherindevelopingcountriesandlowerindevelopedcountries.Further,Baietal.(2019)appliedconvergenceanalysisandaprobitmodeltocountry-leveldatatoexaminewhichdeterminantsconvergetodifferentgroupsofcarbonproductivitygrowth.TheirresultsindicatedthatR&DinvestmentsandGDPpercapitatendtoconvergetothegroupwithhighcarbonproductivity,whereaseconomieswithforeign-tradedependenceandhigherenergyintensitytendtoconvergetothelow-carbon-productivitygroup.LiandWang(2019)appliedspatial-analysistechniquesandpanel-datamodelstoregionaldataandquantifiedthevariationsincarbonproductivityacrossChineseprovinces.Theyfoundthattechnologylevel,tradeopenness,GDPpercapita,andforeigndirectinvestmentsenhancecarbonproductivity.Thereisalsoapositivelinkbetweenenvironmental-taxreformandcarbonproductivityinEUcountries(Ekinsetal.,2012).Somestudieswentfurtheranddecomposedchangesincarbonproductivityorcarbonintensityintounderlyingcomponents,suchastechnicalefficiencyandtechnologicalchange(e.g.,MengandNiu,2012;HuandLiu,2016).Thesestudieshaveprimarilyappliedinsights6TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturingfromindexdecompositionanalysisorproductiontheory.4Thefindingsofmanystudiesshowthatcarbon-productivitygrowthhasresultedmainlyfromtechnologicalchange(MengandNiu,2012;HuandLiu,2016;Wangetal.,2018;Baietal.,2019)whereastheglobalreductionincarbonintensityhasresultedprimarilyfromdecreasedenergyintensity(Liuetal.,2022)andimprovementsinthethermalefficiencyofelectricitygeneration(AngandSu,2016).Moreover,bothcapitalandlabor-energysubstitutionsandenergystructurehavedecreasedthecarbon-intensitygapbetweenJapanandChina(Lietal.,2022).Althoughstudiesthatfocusonthemacrolevelofcountriesandregionsclearlyprovideimportantinsights,itisimportanttounderstandthedrivingforcesoftheevolutionofcarbonproductivityfromtheperspectiveofthemicroleveloffirms.Eventhoughrecentyearshavewitnessedagrowthinfirm-levelstudiesofthisissue,onlyasmallbodyofresearchhasexamineditindepth.Somestudiesfocusedoncorrelationanalysesofvariousfirm-levelfactorsandcarbonproductivitygrowth(e.g.,CaoandKarplus,2014;Jungetal.,2021;Bagchietal.,2022).CaoandKarplus(2014)examinedthefirm-leveldeterminantsofcarbonintensityusingdataonChinesefirms.Theresultsshowedthatchangesincarbonintensityweredrivenlargelybychangesinenergyusebutfirmsizeandfirmownershipalsoplayedarole.Forexample,state-ownedfirmsexhibitedhighercarbonintensitycomparedtojointventures.Brännlundetal.(2014)examinedtheeffectofclimatepolicyandfoundthatCO2taxhasbeenasignificantreasonforthedeclineinSwedishmanufacturingfirms’carbonintensity.Energyconsumptionisthemaincauseofemissions.Therefore,energyintensityandcarbonintensityarerelatedbutnotsynonymous.Althoughdifferentdecompositionanalysesarealsousedtoexamineenergyintensity(e.g.,LiuandAng,2003;LinandDu,2014;TanandLin,2018),ourpaperconcentratesonstudiesthatexaminecarbonproductivity(orcarbonintensity,itsinverse).7ETLAWorkingPapers|No99Morerecently,RichterandSchiersch(2017)testedthehypothesisthatexportingfirmsperformbetterenvironmentallythannonexportingfirms.TheirresultsshowedapositiverelationshipbetweenGermanfirms’exportintensityandcarbonproductivity.Jungetal.(2021)showedthatcarbonproductivityhasbeenhigherinfirmsundertheemissions-tradingscheme.Theyalsofoundthatcarbonproductivityhasbeenhigherinmoreprofitableandinnovativefirmsandinfirmsinwhichthemanagementhasexperienceinenvironmentalfields.Bagchietal.(2022)useddataonfirmsinthemanufacturingsectorofIndiaandfoundthatespeciallyexportandtechnologicalintensitiesenhancecarbonproductivity.Lastly,CoderoniandVanina(2022)useddataonItalianfarmsandfoundanonlinearrelationshipbetweencarbonproductivityandfarms’economicperformance.Regardingtheempiricalresearchontheroleofmicro-leveldynamicssuchasthemarketentryandexitoffirms,studiesofindustryswitchingandoftheallocationofemissionsacrossfirmsare,tothebestofourknowledge,stilllacking.Ourstudyaddressesthisgapbyexaminingthecontributionofsuchmicro-levelstructuralchangesoncarbonproductivityusinguniquedataonfirmsinFinland’smanufacturingsector.Carbonproductivitydecomposition3.1DecompositionofproductivitylevelProductivitydecompositioninlevelsmeasurescomponentsofaggregateproductivity(e.g.,theproductivityofanindustryorasector).OnesuchapproachwasoriginallyproposedbyOlleyandPakes(1996),whodecomposedindustry-levelproductivityintothesumofanunweightedaverageproductivitylevelofallfirmsandacovariancecomponentrepresentingtheallocationofresourcesacrossfirms.AsinOlleyandPakes(1996)butforourcontextof8TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturingcarbonproductivity,wefirstdefinetheaggregatecarbonproductivityofasectorinperiodtasCt.Assumingconsistentaggregation,thesector’scarbonproductivityisashare-weightedaverageoffirm-levelcarbon-productivitymeasurescit,thatis,��∑�������. (1)InEq.(1),��������istheshareoffirmiinthetotalGHGemissionsofthesectorinyeart,and���������isthecarbonproductivityoffirmiinperiodtdefinedastheratioofthefirm’svalueadded(��)toitsGHGemissions(��).Thesector’scarbonproductivitycanbesplitintotwocomponents:��̄�∑����̄�cov,�������,(2)wherē�istheunweightedaverageofthecarbonproductivityofallthefirmsobservedinperiodtandcov��,���isacovariancetermthatcapturestheallocationofemissionsacrossfirms.Anegativecovariancetermindicatesthatlow-productivityfirmstendtohavealargershareofemissionsthanhigh-productivityfirms,whereasapositivecovariancetermindicatesthathigh-productivityfirmstendtohavealargershareofemissionsthanlow-productivityfirms.AsEq.(2)indicates,thesector’scarbonproductivitycangroweitherbecauseofincreasesintheaveragecarbonproductivityofallthefirmsorbecauseofahighercovariancevalue,whichrepresentsashiftofemissionsfromlow-productivitytohigh-productivityfirms.TheOlley–Pakesdecomposition,however,doesnotexplicitlyconsidertheentryandexitoffirmsbutattributesthesefirmstothecovarianceterm.FollowingKuosmanenandKuosmanen(2021),weclassifythesector’sfirmsintofourmutuallyexclusivegroups:9ETLAWorkingPapers|No99entrants(E)inperiodt+1,exitingfirms(X)observedinperiodtbutnotinperiodt+1,andallcontinuing(surviving)firmsS,whicharesubdividedintocontinuingnonswitchingfirms(Sn)andcontinuingindustry-switchingfirms(S–Sn).5Applyingthisclassification,thesector’scarbonproductivityinperiodtcanbewrittenasasumoffourcomponents,asfollows:���̄���̄��̄����̄��̄�����̄������������������(3).Thefirstcomponentontheright-handsideofEq.(3)istheaveragecarbonproductivityofnonswitchingcontinuingfirms.Thesecondcomponentdescribestheeffectofindustryswitching,whichisverycommoninmanyindustries(Kuosmanenetal.,2022b).Wedefineindustryswitchingasanobservedchangeinthe5-digitindustryclassificationofthefirminthemanufacturingsector.Thiscomponentisidentifiedbycomparingtheaveragecarbonproductivityofallthecontinuingfirmsandthatofthenonswitchingcontinuingfirms.Notethatwhentheswitchingeffectisnotconsideredexplicitly,itscontributionismixedwiththeeffectsofcontinuingnonswitchingfirmsandthecontributionofentryandexit.Thethirdcomponentcapturestheproductivityimpactofentryandexitbycomparingtheaveragecarbonproductivityofallthefirmsandthatofthecontinuingfirms.Finally,thefourthcomponentcapturestheallocationofemissionsacrossallthefirms.Wemeasurethiscomponentasthedifferencebetweenthesector’scarbonproductivityandtheunweightedaveragecarbonproductivityofallthefirms.Asimilarclassificationisusedinotherproductivitystudies,suchasMaliranta(2003),BöckermanandMaliranta(2007),HyytinenandMaliranta(2013),andMalirantaandMäättänen(2015).10TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturing3.2DecompositionofproductivitychangeDecompositionofproductivitychangemeasuressourcesofaggregateproductivitygrowth(Bailyetal.,1992;GrilichesandRegev,1995;MelitzandPolanec,2015).Usingthesameclassificationoffirms,wedecomposethesector’scarbonproductivitygrowthintofourcomponentsexpressedaspercentagechanges:�������̄����̄����̄��̄����̄���̄,(4)������������̄��������̄��������̄�������̄�������̄������������̄�wheresubscriptSreferstothesurvivingfirmsandSnreferstothesurvivingnonswitchingfirmsinperiodstandt–1.Thefirstcomponentontheright-handsideisthecarbonproductivitychangeofthecontinuingnonswitchingfirms.Thesecondcomponentmeasuresthecontributionofthecontinuingindustry-switchingfirmstoaggregatecarbonproductivitygrowth.Thethirdcomponentcapturesthecontributionoffirms’entryandexit,andthefourthcomponentcapturestheallocationofemissionsacrossfirms.Thus,thesector’scarbonproductivitygrowthisthesumofthesefourcomponents.Data4.1DatasourcesThisstudyfocusesontheFinnishmanufacturingsectorduringtheperiod2000–2019.Theanalysisisbasedonfirm-levelvaluesofcarbonproductivitycomputedastheratioofafirm’svalueadded(VA)toitsGHGemissions.Observationswithmissingvaluesandobservations11ETLAWorkingPapers|No99withzeroemissionswereexcluded,becausecarbonproductivitycannotbecomputedforthoseobservations.Thehigherthevalueofcarbonproductivity,themoreefficientthefirmisinitsuseofemissions.Toobtaintherequiredmicrodata,werelyontwodatasources.TheGHGemissionmicrodatacomefromtheNationalGreenhouseGasInventoryofStatisticsFinland.6ThisinventoryannuallyreportsGHGemissionsandremovalsandprovidesaninformationbasefortheplanningandmonitoringofclimatepolicy.UndertheUnitedNationsFrameworkConventiononClimateChange,theKyotoProtocol,andEUregulations,StatisticsFinlandisthegeneralauthorityfortheofficialstatisticsofFinlandandisresponsibleforGHG-inventorysubmissions.TheemissionsdataincludeunitsthatbelongtotheEUETSandreportbothcarbondioxideandGHGemissionsinCO2eq.attheestablishmentandfirmlevelsannually.Inthisstudy,weutilizefirm-leveldataandGHGemissionsinCO2eq.ComparingourGHG-emissionsdatawithEurostat’saggregatefiguresforthemanufacturingsector’sGHGemissions,wefindthatourdata’scoverageisabout99%thatofEurostat’sdata.OuremissionsdataarethusrepresentativeoftheentireFinnishmanufacturingsector.ThedataonVAaredrawnfromStatisticsFinland’sFinancialStatementpaneldata.Thesepaneldataprovideexhaustivecoverageofalltheindependentbusinessenterprisesinalmostallindustriesandincludethemostessentialloss-and-profit-accountandbalance-sheetdataoffirms(e.g.,industrycode,numberofpersonnel,VA,andotherfirm-relatedinformation).Allenterpriseswithatleast20employeesareincludedinthedirectdatacollection,andthedataonsmallerenterprisesandnonrespondententerprisesarederivedfromadministrativerecords,suchasbusinesstaxationregisters.Linkingthesetwosourcesofinformationthroughfirms’IDcodesallowsustocreateauniquematcheddatasetinwhichfirm-levelemissionrecordsarecombinedwiththeInformationontheGreenhouseGasInventory:https://www.tilastokeskus.fi/tup/khkinv/index_en.html.12TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturingbusiness-registerdatasetscontainingdetailedinformationonfirms’financialstatistics.AftermatchingtheemissionsdatawiththeFinancialStatementpaneldata,wearriveat5,269yearlyobservationsrepresenting602manufacturingfirmsoperatingin2000–2019.WedescribeoursampleinTable1.VAispresentedinmillionsofeuros,GHGemissionsinthousandsoftonnesofCO2eq.,andcarbonproductivityinthousandsofeurospertonneofCO2eq.VAandcarbonproductivityweredeflatedusingtheGDPdeflatorforFinland(with2015asthebaseyear)toallowforcomparisonacrossyears.Thenumberofobservationsinthesubsamplesvariesbetween247and276annually.Theaveragecarbonproductivityforthefirmswas31,000eurospertonneofCO2eq.in2000andincreasedto694,000eurospertonneofCO2eq.in2019.Asthetablehighlights,therearelargevariationsbetweentheaveragesduringthestudyperiod.[Table1here]4.2CarbonproductivityofthemanufacturingsectorFigure2plotsthecarbonproductivityofthemanufacturingsectorfortheperiod2000–2019calculatedbasedonourfirm-leveldata.Asnotedabove,ouremissionsdataarerepresentativeoftheentireFinnishmanufacturingsector.ItshouldbenotedthatthereisaclearU-shapedtrendincarbonproductivityovertime:itdecreasedconsiderablyfrom2000to2009andthenincreasedinmorerecentyears.Despitethislatterpositivetrend,thesector’scarbonproductivityhasyettonotreacheditshighestvaluethatwasobservedin2000(890eurospertonneofGHGemissions).TheunderlyingtrendsofVAandGHGemissionsofthemanufacturingsectorarepresentedinFigure3.Thefigurerevealsthattheincreasingtrendincarbonproductivity13ETLAWorkingPapers|No99after2009isnotsolelyaphenomenonofdecreasedemissionsandimprovementsinenvironmentalperformancebutthatitisalsoduetothedecreasingVA.AsmentionedintheIntroduction,thismaybetheresultofthedeclineofindustrialoutputbecauseofthefinancialcrisistakingplaceatthattime.[Figures2and3here]4.3AveragecarbonproductivitybysubperiodsandsubgroupsThestudyperiodcoversthe20yearsfrom2000to2019.Tobettercapturetheeffectsoffirmdynamicsoncarbonproductivity,wefocusonthreesubperiodslastingsixtosevenyears:2000–2006,2007–2012,and2013–2019.Weusethesesubperiodsforthreereasons.First,wechoosemedium-runtimeperiodsbecauseshort-runanalysis(e.g.,analysisofyearlychanges)isunabletocapturestructuralchangessuchasfirmentry,firmexit,andindustryswitching.Second,theperiodsincludedifferenteconomicup-anddownturns,includingthegrowthperiod,theGreatRecession,andthefollow-uprecessionandslowrecovery.Third,theseperiodsarecloselylinkedwiththefirstthreephasesoftheEUETS:thepilotphase,orphase1(2005–2007),phase2(2008–2012),andphase3(2013–2020).7RecallthatthedecompositionofcarbonproductivitypresentedinSection3isbasedonpartitioningthesampleoffirmsintofourmutuallyexclusivesubgroups.BeforeweThefirm-leveldataontheFinnishGHGinventoryreachbackto1999,buttheEUETSwaslaunchedinJanuary2005.Becausetheemissionallowanceswereinitiallygivenforfreeinproportiontohistoricalemissionlevels(anapproachknownas“grandfathering”;e.g.,Satoetal.,2022),therewasaneedtomonitorGHGemissionspriortothepilotphase(phase1)oftheEUETSin2005–2007.14TheRoleofFirmDynamicsintheGreenTransition:CarbonProductivityDecompositioninFinnishManufacturingpresenttheresultsinthesubsequentsections,wecomparetheaveragecarbonproductivityofthesefours
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年农业检测能力验证合同
- 交通运输部所属事业单位2026年度第三批统一公开招聘备考题库及一套答案详解
- 2025年台州学院编制外合同工招聘备考题库及参考答案详解一套
- 2025年茂名市电白区电城中学招聘合同制教师备考题库带答案详解
- 国家知识产权局专利局专利审查协作广东中心2026年度专利审查员公开招聘备考题库及一套完整答案详解
- 2025年杭州高新区(滨江)综合行政执法局招聘协管员备考题库及答案详解参考
- web项目论坛课程设计
- 《AQ 2031-2011金属非金属地下矿山监测监控系统建设规范》专题研究报告
- 2025西藏日喀则市第二中等职业技术学校招聘编外人员8人考试核心题库及答案解析
- 2025年消费电子柔性电路用铜箔市场报告
- 2025下半年贵州遵义市市直事业单位选调56人考试笔试备考题库及答案解析
- 2025年海北朵拉农牧投资开发有限公司招聘3人备考题库及一套完整答案详解
- THBJGJ 001-2024《套管加强型金属膨胀锚栓》
- 2025年宁波市鄞州区福明街道编外人员招聘6人(公共基础知识)综合能力测试题附答案解析
- 2025安徽淮北市消防救援支队招聘政府专职消防文员17人考试历年真题汇编带答案解析
- 《化工企业可燃液体常压储罐区安全管理规范》解读课件
- 大学生财务管理专业职业规划
- 美国史智慧树知到期末考试答案章节答案2024年东北师范大学
- 员工下班喝酒意外免责协议书
- 光动力疗法治愈牙周溃疡探讨
- 2024年载货汽车项目营销策划方案
评论
0/150
提交评论