山西省大同二中2022年高一数学第一学期期末学业水平测试试题含解析_第1页
山西省大同二中2022年高一数学第一学期期末学业水平测试试题含解析_第2页
山西省大同二中2022年高一数学第一学期期末学业水平测试试题含解析_第3页
山西省大同二中2022年高一数学第一学期期末学业水平测试试题含解析_第4页
山西省大同二中2022年高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.62.函数的定义域是()A. B.C. D.(0,4)3.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别是BB1、BC的中点.则图中阴影部分在平面ADD1A1上的正投影为()A. B.C. D.5.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角6.若曲线上所有点都在轴上方,则的取值范围是A. B.C. D.7.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.8.已知,且,则A. B.C. D.9.函数fx=lgA.0 B.1C.2 D.310.方程的零点所在的区间为()A. B.C. D.11.化简A. B.C.1 D.12.函数的部分图象如图所示,则的值分别是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的部分图象如图所示.若,且,则_____________14.函数fx的定义域为D,给出下列两个条件:①f1=0;②任取x1,x2∈D且x1≠15.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.16.函数的零点为_________________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.在平面直角坐标系中,角()和角()的顶点均与坐标原点重合,始边均为轴的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为,.(1)求,的值;(2)求的值.18.已知函数的图象在定义域(0,+∞)上连续不断,若存在常数T>0,使得对于任意的x>0,恒成立,称函数满足性质P(T).(1)若满足性质P(2),且,求的值;(2)若,试说明至少存在两个不等的正数T1、T2,同时使得函数满足性质P(T1)和P(T2);(3)若函数满足性质P(T),求证:函数存在零点.19.化简求值:(1)(2).20.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.21.已知,向量,,记函数,且函数的图象相邻两对称轴间的距离为.(1)求函数的解析式;(2)若关于的方程在上有三个不相等的实数根,求的取值范围.22.若集合,,.(1)求;(2)若,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.2、C【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【详解】由,故选:C3、A【解析】由题可得,根据正弦函数的性质即得.【详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.4、A【解析】确定三角形三点在平面ADD1A1上的正投影,从而连接起来就是答案.【详解】点M在平面ADD1A1上的正投影是的中点,点N在平面ADD1A1上的正投影是的中点,点D在平面ADD1A1上的正投影仍然是D,从而连接其三点,A选项为答案,故选:A5、A【解析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.6、C【解析】曲线化标准形式为:圆心,半径,,即,∴故选C7、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D8、A【解析】由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系与二倍角公式,求得的值【详解】解:∵tan(α),则tanα,∵tanα,sin2α+cos2α=1,α∈(,0),可得sinα∴2sinα=2()故选A点睛】本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题9、C【解析】在同一个坐标系下作出两个函数的图象即得解.【详解】解:在同一个坐标系下作出两个函数的图象如图所示,则交点个数为为2.故选:C10、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】因为函数、均为上的增函数,故函数在上也为增函数,因为,,,,由零点存在定理可知,函数的零点所在的区间为.故选:C.11、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题12、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.14、2x-1【解析】由题意可知函数在定义域内为增函数,且f1【详解】因为函数fx的定义域为D,且任取x1,x2所以fx因为f1所以f(x)=2故答案为:2x-115、【解析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.16、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),(2)【解析】(1)先利用任意角的三角函数的定义求出,再利用同角三角函数的关系可求得答案,(2)先利用诱导公式化简,再代值计算即可【小问1详解】因为在平面直角坐标系中,角,的顶点均与坐标原点重合,终边分别与单位圆交于两点,且两点的纵坐标分别为,,又因为,,根据三角函数的定义得:,,所以,,所以,.【小问2详解】18、(1)0;(2)证明见解析;(3)证明见解析.【解析】(1)由满足性质可得恒成立,取可求,取可求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,由可得,所以,;【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.19、(1)(2)【解析】(1)根据对数运算公式计算即可;(2)根据指数运算公式和根式的性质运算化简.【小问1详解】原式【小问2详解】原式.20、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足,解得,即函数的定义域为(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题21、(1).(2)【解析】(1)化简的解析式,并根据图象相邻两对称轴间的距离求得.(2)利用换元法,结合二次函数零点分布的知识,列不等式组来求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论