




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.112.函数,的值域为()A. B.C. D.3.若函数的定义域和值域都为R,则关于实数a的下列说法中正确的是A.或3 B.C.或 D.4.已知,,,则的大小关系为()A. B.C. D.5.已知函数是定义在R上的偶函数,且在区间单调递增.若实数a满足,则a的取值范围是A. B.C. D.6.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.7.若函数在定义域上的值域为,则()A. B.C. D.8.若函数是定义在上的偶函数,则()A.1 B.3C.5 D.79.设,则a,b,c的大小关系是A. B.C. D.10.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为11.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A. B.C. D.12.函数在一个周期内的图像如图所示,此函数的解析式可以是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.如图,若角的终边与单位圆交于点,则________,________14.的化简结果为____________15.已知圆,圆,则两圆公切线的方程为__________16.不等式的解集是__________三、解答题(本大题共6小题,共70分)17.已知的三个内角所对的边分别为,且.(1)角的大小;(2)若点在边上,且,,求的面积;(3)在(2)的条件下,若,试求的长.18.已知函数(且)的图象过点(1)求的值.(2)若.(i)求的定义域并判断其奇偶性;(ii)求的单调递增区间.19.已知函数为奇函数.(1)求实数a的值;(2)求的值.20.近年来,国家大力推动职业教育发展,职业教育体系不断完善,人才培养专业结构更加符合市场需求.一批职业培训学校以市场为主导,积极参与职业教育的改革和创新.某职业培训学校共开设了六个专业,根据前若干年的统计数据,学校统计了各专业每年的就业率(直接就业的学生人数与招生人数的比值)和每年各专业的招生人数,具体统计数据如下表:专业机电维修车内美容衣物翻新美容美发泛艺术类电脑技术招生人数就业率(1)从该校已毕业的学生中随机抽取人,求该生是“衣物翻新”专业且直接就业的概率;(2)为适应市场对人才需求的变化,该校决定从明年起,将“电脑技术”专业的招生人数减少人,将“机电维修”专业的招生人数增加人,假设“电脑技术”专业的直接就业人数不变,“机电维修”专业的就业率不变,其他专业的招生人数和就业率都不变,要使招生人数调整后全校整体的就业率比往年提高个百分点,求的值21.已知,,,为坐标原点.(1)若,求的值;(2)若,且,求.22.已知全集,集合,.(1)当时,求;(2)命题p:,命题q:,若q是p的必要条件,求实数a的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C2、A【解析】首先由的取值范围求出的取值范围,再根据正切函数的性质计算可得;【详解】解:因为,所以因为在上单调递增,所以即故选:A3、B【解析】若函数的定义域和值域都为R,则.解得或3.当时,,满足题意;当时,,值域为{1},不满足题意.故选B.4、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.5、C【解析】函数是定义在上的偶函数,∴,等价为),即.∵函数是定义在上的偶函数,且在区间单调递增,∴)等价为.即,∴,解得,故选项为C考点:(1)函数的奇偶性与单调性;(2)对数不等式.【思路点晴】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用根据函数的奇偶数和单调性之间的关系,综合性较强.由偶函数结合对数的运算法则得:,即,结合单调性得:将不等式进行等价转化即可得到结论.6、A【解析】根据题意画出图形,结合图形求出半径r,再计算弧长【详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【点睛】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题7、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A8、C【解析】先根据偶函数求出a、b的值,得到解析式,代入直接求解.【详解】因为偶函数的定义域关于原点对称,则,解得.又偶函数不含奇次项,所以,即,所以,所以.故选:C9、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.10、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件11、C【解析】设AC=x,则BC=12-x(0<x<12)矩形的面积S=x(12-x)>20∴x2-12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率考点:几何概型12、A【解析】根据图象,先确定以及周期,进而得出,再由求出,即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A二、填空题(本大题共4小题,共20分)13、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;14、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.15、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.16、【解析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【点睛】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题三、解答题(本大题共6小题,共70分)17、(1);(2);(3).【解析】(1)由条件知,结合正弦定理得,整理得,可得,从而得.(2)由,得.在中,由正弦定理得.在中,由余弦定理可得.所以.(3)由,可得.在中,由余弦定理得试题解析:(1),由正弦定理得,∴,∴,∵,∴,∵,∴.(2)由,得,在中,由正弦定理知,∴,解得,设,在中,由余弦定理得,∴,整理得解得,∴;(3)∵,∴,在中,由余弦定理得∴.18、(1);(2)(i)定义域为,是偶函数;(ii).【解析】(1)由可求得实数的值;(2)(i)根据对数的真数大于零可得出关于实数的不等式,由此可解得函数的定义域,然后利用函数奇偶性的定义可证明函数为偶函数;(ii)利用复合函数法可求得函数的增区间.【详解】(1)由条件知,即,又且,所以;(2).(i)由得,故的定义域为.因为,故是偶函数;(ii),因为函数单调递增,函数在上单调递增,故的单调递增区间为.19、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算.【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题.20、(1)0.08(2)120【解析】理解题意,根据数据列式求解【小问1详解】由题意,该校往年每年的招生人数为,“衣物翻新”专业直接就业的学生人数为,所以所求的概率为【小问2详解】由表格中的数据,可得往年各专业直接就业的人数分别为,,,,,,往年全校整体的就业率为,招生人数调整后全校整体的就业率为,解得21、(1)(2)【解析】(1)由向量平行的坐标运算列式直接求解即可;(2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解.【详解】(1)依题,,因,所以,所以(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软考网络应用实例分享试题及答案
- 微生物学期末试题及答案
- 网络工程师前沿技术应考试题及答案
- 影像科面试题及答案
- 无碳小车测试题及答案
- 篮球教资面试题目大全及答案
- 与动物的亲密接触话题作文(11篇)
- 机电工程安全管理试题及答案
- 软考网络工程师试题及答案新手指南2025年
- 公共政策与社区治理试题及答案
- 江苏省淮阴区2025届高三下第一次测试数学试题含解析
- 人工智能赋能教师数字素养提升
- C919机组培训-导航系统
- 药理学知到智慧树章节测试课后答案2024年秋哈尔滨商业大学
- 智能病历质控系统需求说明
- 山东省烟台市莱州市一中2025届高考数学押题试卷含解析
- 2023年高考真题-生物(辽宁卷) 含答案
- 叉车出租行业市场调研分析报告
- 专题02代数推理题(真题2个考点模拟16个考点)(原卷版+解析)
- 变压器维修投标方案
- 2025届山东师范大学附中高考适应性考试历史试卷含解析
评论
0/150
提交评论