2022-2023学年广东省阳江市阳东区八年级数学第一学期期末综合测试模拟试题含解析_第1页
2022-2023学年广东省阳江市阳东区八年级数学第一学期期末综合测试模拟试题含解析_第2页
2022-2023学年广东省阳江市阳东区八年级数学第一学期期末综合测试模拟试题含解析_第3页
2022-2023学年广东省阳江市阳东区八年级数学第一学期期末综合测试模拟试题含解析_第4页
2022-2023学年广东省阳江市阳东区八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.计算的结果是()A.2 B.4 C. D.2.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS3.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为A.(-2,3) B.(-2,-3) C.(2,-3) D.(-3,-2)4.公式表示当重力为P时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P5.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3 C.4.5 D.56.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m和4m..按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.4m D.6m7.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)8.下列各式计算正确的是()A. B.(3xy)2÷(xy)=3xyC. D.2x•3x5=6x69.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为()A.64 B.49 C.36 D.2510.在平面直角坐标系中,点A关于x轴的对称点为A1(3,-2),则点A的坐标为()A.(-3,-2) B.(3,2) C.(3,-2) D.(-3、2)11.若(x+a)(x﹣2)=x2+bx﹣6,则a、b的值是()A.a=3,b=5 B.a=3,b=1 C.a=﹣3,b=﹣1 D.a=﹣3,b=﹣512.化简分式的结果是()A. B. C. D.二、填空题(每题4分,共24分)13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是你认为适合参加决赛的选手是_____.14.一次函数y=kx-3的图象经过点(-1,3),则k=______.15.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=_____.16.已知一次函数y=-x+3,当0≤x≤2时,y的最大值是.17.如图,是的中线,,,则和的周长之差是.18.如图,AB⊥y轴,垂足为B,∠BAO=30°,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为__________;三、解答题(共78分)19.(8分)(1)在等边三角形中,①如图①,,分别是边,上的点,且,与交于点,则的度数是___________度;②如图②,,分别是边,延长线上的点,且,与的延长线交于点,此时的度数是____________度;(2)如图③,在中,,是锐角,点是边的垂直平分线与的交点,点,分别在,的延长线上,且,与的延长线交于点,若,求的大小(用含法的代数式表示).20.(8分)某超市计划购进一批甲、乙两种玩具,已知件甲种玩具的进价与件乙种玩具的进价的和为元,件甲种玩具的进价与件乙种玩具的进价的和为元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过件,超出部分可以享受折优惠,若购进件甲种玩具需要花费元,请你写出与的函数表达式.21.(8分)如图1,,,是郑州市二七区三个垃圾存放点,点,分别位于点的正北和正东方向,米,八位环卫工人分别测得的长度如下表:甲乙丙丁戊戌申辰BC(单位:米)8476788270848680他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中长度的平均数、中位数、众数;(2)求处的垃圾量,并将图2补充完整;22.(10分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.23.(10分)如图,,交于点,.请你添加一个条件,使得,并加以证明.24.(10分)观察下列等式:①,②,③,④,(1)按此规律完成第⑤个等式:(___________)(_______)(________);(2)写出你猜想的第个等式(用含的式子表示),并证明其正确性.25.(12分)一个多边形,它的内角和比外角和的倍多求这个多边形的边数.26.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据乘方的意义转化为二次根式的乘法运算,即可得出结果.【详解】==2故选:A【点睛】本题考查了乘方的意义以及二次根式的乘法运算,属基础题,认真计算即可.2、B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、A【解析】根据关于y轴对称的点的横坐标互为相反数,纵坐标不变进行求解即可.【详解】∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),故选A.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握坐标的变化规律是解题的关键.4、A【解析】试题分析:A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬;故选A考点:一次函数的应用5、A【分析】先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.6、B【解析】根据△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.【详解】解:在直角△ABC中,BC=4m,AC=3m.则∵中心O到三条支路的距离相等,设距离是r.

∵△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积∴∴3×4=5r+4r+3r

∴r=1.

故O到三条支路的管道总长是1×3=3m.

故选:B.【点睛】此题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.7、D【解析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.8、D【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】A.,故选项A错误;B.(3xy)2÷(xy)=9xy,故选项B错误;C.与不是同类二次根式,不能合并,故选项C错误;D.2x•3x5=6x6,正确.故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9、B【解析】试题解析:设边长为8的正方形内部的整点的坐标为(x,y),x,y都为整数.则-4<x<4,-4<y<4,故x只可取-3,-2,-1,0,1,2,3共7个,y只可取-3,-2,-1,0,1,2,3共7个,它们共可组成点(x,y)的数目为7×7=49(个).故选B.考点:规律型:点的坐标.10、B【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”进行求解即可.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,且A1(3,-2)∴A的坐标为(3,2).所以答案为B选项.【点睛】本题主要考查了点关于x轴对称相关问题,熟练掌握相关规律是解题关键.11、B【分析】先把方程的左边化为与右边相同的形式,再分别令其一次项系数与常数项分别相等即可求出a、b的值.【详解】解:原方程可化为:x2+(a﹣2)x﹣2a=x2+bx﹣6,故,解得.故选:B.【点睛】本题考查多项式乘法,掌握多项式乘多项式的计算法则是本题的解题关键.12、B【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式==.所以答案选B.【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.二、填空题(每题4分,共24分)13、乙【解析】根据方差的定义,方差越小数据越稳定即可求解.【详解】∵而,∴乙的成绩最稳定,∴派乙去参赛更好,故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、-6【详解】解:把点代入得,解得故答案为:15、-1【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【详解】∵点A(1,a)与点B(b,4)关于x轴对称,∴b=1,a=−4,则a+b=−4+1=−1,故答案为:−1.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.16、1.【解析】试题分析:∵一次函数y=-x+1中k=-1<0,∴一次函数y=-x+1是减函数,∴当x最小时,y最大,∵0≤x≤2,∴当x=0时,y最大=1.考点:一次函数的性质.17、1【分析】根据中线可得AD=CD,周长之差就是AB与BC的差,计算即可.【详解】∵BD是△ABC的中线,∴AD=CD,∴△ABD和△CBD的周长之差就是AB与BC的差,即AB-BC=1cm,故答案为:1.【点睛】本题考查三角形中线相关的计算,关键在于熟悉中线的性质.18、【分析】观察图象可知,O2、O4、O6、...O2020在直线y=-x上,OO2=的周长=(1++2),OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),再根据点O2020的纵坐标是OO2020的一半,由此即可解决问题.【详解】解:观察图象可知,O2、O4、O6、...O2020在直线y=-x上,∵∠BAO=30°,AB⊥y轴,点B的坐标是(0,1),∴OO2=的周长=(1++2),∴OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),∵直线y=-x与x轴负半轴的交角为30°∴点O2020的纵坐标=OO2020=故答案为:【点睛】本题考查坐标与图形的变化、规律型:点的坐标、一次函数的性质等知识,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.三、解答题(共78分)19、(1)60;(2)60;(3)【分析】(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点是边的垂直平分线与的交点,,,,,,,.【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1)每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=21x+1.【分析】(1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组求解即可;(2)分不大于20件和大于20件两种情况,分别列出函数关系式即可.【详解】解:(1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元.由题意得解得答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x-20)×30×0.7=21x+1.【点睛】本题考查二元一次方程组的应用,一次函数的应用.(1)中能抓住题目中的一些关键性词语,找出等量关系是解题关键;(2)中需注意要分段讨论.21、(1)米,米,米;(2),图见解析.【分析】(1)利用平均数等概念求法可得出答案;(2)利用扇形统计图以及条形统计图可得出处垃圾量以及所占百分比,进而求出垃圾总量,进而得出处垃圾量.【详解】(1)(米),中位数是:米,众数是:米;(2)处垃圾存放量为:,在扇形统计图中所占比例为:,垃圾总量为:(千克),处垃圾存放量为:,占.补全条形图如下:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论