内蒙古自治区呼和浩特市四中学2022-2023学年九年级数学第一学期期末质量跟踪监视试题含解析_第1页
内蒙古自治区呼和浩特市四中学2022-2023学年九年级数学第一学期期末质量跟踪监视试题含解析_第2页
内蒙古自治区呼和浩特市四中学2022-2023学年九年级数学第一学期期末质量跟踪监视试题含解析_第3页
内蒙古自治区呼和浩特市四中学2022-2023学年九年级数学第一学期期末质量跟踪监视试题含解析_第4页
内蒙古自治区呼和浩特市四中学2022-2023学年九年级数学第一学期期末质量跟踪监视试题含解析_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A. B. C. D.2.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是()A.-2 B.±4 C.2 D.±23.如果点与点关于原点对称,则()A.8 B.2 C. D.4.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°5.已知点A(x1,y1),B(x2,y2)在双曲线y=上,如果x1<x2,而且x1•x2>0,则以下不等式一定成立的是()A.y1+y2>0 B.y1﹣y2>0 C.y1•y2<0 D.<06.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个7.如图,AB切⊙O于点B,C为⊙O上一点,且OC⊥OA,CB与OA交于点D,若∠OCB=15°,AB=2,则⊙O的半径为()A. B.2 C.3 D.48.如图,点是上的点,,则是()

A. B. C. D.9.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个10.在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为()A.3 B.12 C.18 D.2711.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A. B. C. D.12.已知点关于轴的对称点在反比例函数的图像上,则实数的值为()A.-3 B. C. D.3二、填空题(每题4分,共24分)13.如图,将正方形绕点逆时针旋转至正方形,边交于点,若正方形的边长为,则的长为________.14.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)15.若方程的解为,则的值为_____________.16.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)17.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____.18.如图,平行四边形中,,如果,则___________.三、解答题(共78分)19.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x天后每千克苹果的价格为p元,写出p与x的函数关系式;(2)若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?20.(8分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.21.(8分)我市某旅行社为吸引我市市民组团去长白山风景区旅游,推出了如下的收费标准:如果人数不超过25人,人均旅游费用为800元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于650元,某单位组织员工去长白山风景区旅游,共支付给旅行社旅游费用21000元,请问该单位这次共有多少员工去长白山风景区旅游?22.(10分)“互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.(1)直接写出与的函数关系式;(2)设该网店每月获得的利润为元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?23.(10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.24.(10分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.25.(12分)综合与探究如图,在平面直角坐标系中,点的坐标分别为,点在轴上,其坐标为,抛物线经过点为第三象限内抛物线上一动点.求该抛物线的解析式.连接,过点作轴交于点,当的周长最大时,求点的坐标和周长的最大值.若点为轴上一动点,点为平面直角坐标系内一点.当点构成菱形时,请直接写出点的坐标.26.有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.

参考答案一、选择题(每题4分,共48分)1、A【详解】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC•tan30°==2,∴S阴影=S△ABC﹣S扇形CBD==.故选A.【点睛】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键.2、C【详解】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故选C.【点睛】本题考查反比例函数的性质.3、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,

∴m=3,n=-5,

∴m+n=-2,

故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.4、C【解析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选C.【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.5、B【分析】根据题意可得x1<x2,且x1、x2同号,根据反比例函数的图象与性质可得y1>y2,即可求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而x1<x2,且x1、x2同号,所以y1>y2,即y1﹣y2>0,故选:B.【点睛】本题考查反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.6、D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴x,∴<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴,则.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.7、B【分析】连接OB,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB的长已知,所以⊙O的半径可求出.【详解】连接OB,∵AB切⊙O于点B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=AO,∵AB=2,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半径为2,故选:B.【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键.8、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.9、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.10、C【分析】设黑球个数为,根据概率公式可知白球个数除以总球数等于摸到白球的概率,建立方程求解即可.【详解】设黑球个数为,由题意得解得:故选C.【点睛】本题考查根据概率求数量,熟练掌握概率公式建立方程是解题的关键.11、C【解析】利用黑色区域的面积除以游戏板的面积即可.【详解】黑色区域的面积=3×33×12×23×1=4,所以击中黑色区域的概率.故选C.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.12、A【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为,然后把A′的坐标代入中即可得到k的值.【详解】解:点关于x轴的对称点A'的坐标为,

把A′代入,得k=-1×1=-1.

故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(每题4分,共24分)13、【分析】连接AE,由旋转性质知AD=AB′=3、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】解:如图,连接AE,∵将边长为3的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=3,∠BAB′=30°,∠DAB=90°∴∠B′AD=60°,在Rt△ADE和Rt△AB′E中,,∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=∠B′AD=30°,∴DE=ADtan∠DAE=3×=,故答案为.【点睛】此题主要考查全等、旋转、三角函数的应用,解题的关键是熟知旋转的性质及全等三角形的判定定理.14、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.15、【分析】根据根与系数的关系可得出、,将其代入式中即可求出结果.【详解】解:∵方程的两根是,

∴、,

∴.

故答案为:.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于、两根之积等于是解题的关键.16、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【点睛】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.17、【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.三、解答题(共78分)19、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【分析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.20、(1)证明见解析;(2).【分析】(1)连接OC,先证明OC∥AE,从而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代换即可证得答案;(2)设OC交BD于点G,连接DC,先证明△ACD∽△AEC,从而利用相似三角形的性质解得,再利用=cos∠FDC,代入相关线段的长可求得DF.【详解】(1)证明:如图,连接OC∵过点C的切线与AB的延长线垂直于点E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠EAC,即AC平分∠BAD;(2)如图,设OC交BD于点G,连接DC∵AD为直径∴∠ACD=90°,∠ABD=90°∵CE⊥AE∴DB∥CE∵OC⊥CE∴OC⊥BD∴DG=BG∵∠OAC=∠EAC,∠ACD=90°=∠E∴△ACD∽△AEC∴∵⊙O的半径为,AC=6∴AD=7,∴∴易得四边形BECG为矩形∴DG=BG=∵=cos∠FDC∴解得:∴DF的长为.【点睛】本题考查相似三角形的性质,借助辅助线,判定△ACD∽△AEC,再根据相似三角形的性质求解.21、共有30名员工去旅游.【分析】利用总价=单价×数量求出人数时25时的总费用,由该费用小于21000可得出去旅游的人数多于25人,设该单位去旅游人数为x人,则人均费用为800﹣20(x﹣25)元,根据总价=单价×数量,即可得出关于x的一元二次方程,解之即可得出x的值,再代入人均费用中去验证,取使人均费用大于650的值即可得出结论.【详解】解:∵800×25=20000<21000,∴人数超过25人.设共有x名员工去旅游,则人均费用为800﹣20(x﹣25)元,依题意,得:x[800﹣20(x﹣25)]=21000,解得:x1=35,x2=30,∵当x=30时,800﹣20×(30﹣25)=700>650,当x=35时,800﹣20×(35﹣25)=600<650,∴x=35不符合题意,舍去.答:共有30名员工去旅游.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22、(1);(2)当销售单价为70元时,最大利润4500元;(3)销售单价定为元.【分析】(1)根据降价1元,销量增加5条,则降价元,销量增加件,即可得出关系式;(2)根据总利润=每条利润×销量,可建立函数关系式,再根据二次函数最值的求法得到最大利润;(3)先求出利润为(3800+200)元时的售价,取符合题意的价格即可.【详解】解:(1)由题意可得:整理得(2)当时,即当销售单价为70元时,最大利润4500元.(3)由题意,得:解得:,抛物线开口向下,对称轴为直线当时,符合该网店要求而为了让顾客得到最大实惠,故当销售单价定为元时,即符合网店要求,又能让顾客得到最大实惠.【点睛】本题考查了二次函数的应用,熟练掌握销售问题的等量关系建立二次函数模型是解题的关键.23、直线AD与⊙O相切,理由见解析【分析】先由AB是⊙O的直径可得∠ACB=90°,进而得出∠ABC+∠BAC=90°;接下来再由∠CAD=∠ABC,运用等量代换可得∠CAD+∠BAC=90°,再运用切线的判定即可求解.【详解】直线AD与⊙O相切.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.又∵∠CAD=∠ABC,∴∠CAD+∠BAC=90°.∴直线AD与⊙O相切【点睛】本题考查了圆周角定理,直线与圆的位置关系.半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径;经过半径外端点并且垂直于这条半径的直线是圆的切线.24、(1)x1=1,x2=3;(2)1<x<3;(3)x>2.【分析】(1)利用抛物线与x轴的交点坐标写出方程ax2+bx+c=0的两个根;(2)写出函数图象在x轴上方时所对应的自变量的范围即可;(3)根据函数图象可得答案.【详解】解:(1)由函数图象可得:方程ax2+bx+c=0的两个根为x1=1,x2=3;(2)由函数图象可得:不等式ax2+bx+c>0的解集为:1<x<3;(3)由函数图象可得:当x>2时,y随x的增大而减小.【点睛】本题考查了抛物线与x轴的交点问题、根据函数图象求不等式解集以及二次函数的性质,注意数形结合思想的应用.25、(1);(2)P(2,);(3)点的坐标为或或或.【分析】⑴代入A、B点坐标得出抛物线的交点式y=a(x+4)(x-2),然后代入C点坐标即可求出;⑵首先根据勾股定理可以求出AC=5,通过PE∥y轴,得到△PED∽△AOC,PD:AO=DE:OC=PE:AC,得到PD:4=DE:3=PE:5,PD,DE分别用PE表示,可得△PDE的周长=PE,要使△PDE周长最大,PE取最大值即可;设P点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论