广西兴业县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第1页
广西兴业县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第2页
广西兴业县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第3页
广西兴业县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第4页
广西兴业县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知,是圆的半径,点,在圆上,且,若,则的度数为()A. B. C. D.2.函数y=ax+b和y=ax2+bx+c(a≠0)在同一个坐标系中的图象可能为()A. B.C. D.3.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.484.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.5.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A. B. C. D.6.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长尺.同时立一根尺的小标杆,它的影长是尺。如图所示,则可求得这根竹竿的长度为()尺A. B. C. D.7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°8.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.9.点是反比例函数的图象上的一点,则()A. B.12 C. D.110.将抛物线y=-2x2向左平移3个单位,再向下平移4个单位,所得抛物线为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,对角线AC、BD交于点O,E是BC的中点,DE交AC于点F,则tan∠BDE=______.12.如图,两个同心圆,大圆半径,,则图中阴影部分的面积是__________.13.正五边形的每个内角为______度.14.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.15.如图,在中,,且把分成面积相等的两部分.若,则的长为________.16.计算:__________.17.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.18.某架飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-t2,这架飞机着陆后滑行最后150m所用的时间是_______s.三、解答题(共66分)19.(10分)某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.(1)求与的函数关系式.(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?20.(6分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.21.(6分)在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已如函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.22.(8分)如图,四边形ABCD内接于⊙O,∠1至∠6是六个不同位置的圆周角.(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求证:AC⊥BD.23.(8分)如图,已知抛物线经过点和点,与轴交于点.(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.①用含的代数式表示线段的长;②连接,,求的面积最大时点的坐标;(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.24.(8分)某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.25.(10分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:秒)之间具有函数关系,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15米时,需要多少飞行时间?(2)在飞行过程中,小球飞行高度何时达到最大?最大高度是多少?26.(10分)在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)

参考答案一、选择题(每小题3分,共30分)1、D【分析】连接OC,根据圆周角定理求出∠AOC,再根据平行得到∠OCB,利用圆内等腰三角形即可求解.【详解】连接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.2、D【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致.【详解】解:A.由一次函数的图象可知a>0,b>0,由抛物线图象可知,开口向上,a>0,对称轴x=﹣>0,b<0;两者相矛盾,错误;B.由一次函数的图象可知a>0,b<0,由抛物线图象可知a<0,两者相矛盾,错误;C.由一次函数的图象可知a<0,b>0,由抛物线图象可知a>0,两者相矛盾,错误;D.由一次函数的图象可知a>0,b<0,由抛物线图象可知a>0,对称轴x=﹣>0,b<0;正确.故选D.【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.3、C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.4、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.5、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A.【点睛】本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.6、B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵太阳光为平行光,∴,解得x=45(尺)..故选:B.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.7、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.8、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.9、A【解析】将点代入即可得出k的值.【详解】解:将点代入得,,解得k=-12,故选:A.【点睛】本题考查反比例函数图象上点,若一个点在某个函数图象上,则这个点一定满足该函数的解析式.10、B【解析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:把抛物线y=-2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是y=-2(x+3)2-4,故选:B.【点睛】本题主要考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:=2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中点,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD的长度,是解题的关键.12、【分析】根据题意可知,阴影部分的面积等于半径为4cm,圆心角为60°的扇形面积.【详解】∵,,∴阴影部分的面积为扇形OBC的面积:,故答案为:.【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式是解决本题的关键.13、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.【点睛】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.14、3n+1.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,

图①中棋子的个数为:3+1=5,

图②中棋子的个数为:5+3=8,

图③中棋子的个数为:7+4=11,

……

则第n个“T”字形需要的棋子个数为:(1n+1)+(n+1)=3n+1,

故答案为3n+1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.15、【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【详解】∵DE∥BC

∴△ADE∽△ABC

∵DE把△ABC分成面积相等的两部分

∴S△ADE=S四边形DBCE

∴∵AD=4,

∴AB=4∴DB=AB-AD=4-4

故答案为:4-4【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.16、【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可.【详解】3-4-1=-2.故答案为:-2.【点睛】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.17、4【分析】根据线段是线段和的比例中项,得出,将a,b的值代入即可求解.【详解】解:∵线段是线段和的比例中项,∴即又∵、的长度分别为2和8,∴∴c=4或c=-4(舍去)故答案为:4【点睛】本题考查了比例中项的概念,掌握基本概念,列出等量关系即可解答.18、1【解析】由于飞机着陆,不会倒着跑,所以当y取得最大值时,t也取得最大值,求得t的取值范围,然后解方程即可得到结论.【详解】当y取得最大值时,飞机停下来,则y=60t-t2=-(t-20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当y=600-150=450时,即60t-t2=450,解得:t=1,t=30(不合题意舍去),∴滑行最后的150m所用的时间是20-1=1,故答案是:1.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(共66分)19、(1)(0≤x≤10);(2)32元;(3)售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【分析】(1)利用利润=每件的利润×数量即可表示出与的函数关系式;(2)令第(1)问中的y值为2520,解一元二次方程即可得出x的值;(3)根据二次函数的性质求得最大值即可.【详解】(1)根据题意有:每个收纳盒售价不能高于40元(2)令即解得或此时售价为30+2=32元(3)∵为正整数∴当或时,y取最大值,最大值为此时的售价为30+6=6元或30+7=37元答:售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查二次函数的应用,掌握二次函数的性质是解题的关键.20、(1)详见解析;(2)AC=.【分析】(1)由,推出四边形BCDE是平行四边形,再证明即可解决问题;(2)在中只要证明即可解决问题.【详解】(1),E为AD的中点,即四边形BCDE是平行四边形四边形BCDE是菱形;(2)如图,连接AC,AC平分在中,.【点睛】本题考查了平行四边形的判定定理与性质、菱形的判定定理、角平分线的定义、正弦三角函数值、直角三角形的性质,熟记各定理与性质是解题关键.21、(1);(2)函数图象见解析,性质:函数图象关于y轴对称(答案不唯一);(3)不等式的解集为或【分析】(1)根据待定系数法进行求解函数的表达式;(2)结合(1),将函数的表达式写成分段形式,然后进行画图,进而求解;(3)结合(2)中的函数图象直接写出不等式的解集.【详解】解:(1)∵当时,,,∴,∴;(2)由(1)知,,∴该函数的图象如图所示:性质:函数图象关于y轴对称(答案不唯一);(3)由函数图象可知,写出不等式的解集为或.【点睛】本题考查待定系数法求函数的表达式,反比例函数的图象与性质,一元一次不等式与一次函数的关系,学会画函数的图象与运用数形结合的思想是解题的关键.22、(1)∠6=∠1,∠5=∠2,1°;(2)详见解析【分析】(1)根据圆的性质可得出与∠1、∠2相等的圆周角,然后计算∠1+∠2+∠3+∠4可得;(2)先得出∠1+∠4=90°,从而得出∠6+∠4=90°,从而证垂直.【详解】(1)∵∠1和∠6所对应的圆弧相同,∴∠1=∠6同理,∠2=∠∠5∵∠1=∠6,∠2=∠5∴∠1+∠2+∠3+∠4=∠6+∠5+∠3+∠4=1°;(2)∵∠1-∠2=∠3-∠4∴∠1+∠4=∠2+∠3∵∠1+∠2+∠3+∠4=1°∴∠1+∠4=∠2+∠3=90°∵∠1=∠6∴∠6+∠4=90°∴AC⊥BD.【点睛】本题考查圆周角的特点,同弧或等弧所对应的圆周角相等,解题关键是得出∠1+∠2+∠3+∠4=1.23、(1)y=x2﹣4x+1;(2)①用含m的代数式表示线段PD的长为﹣m2+1m;②△PBC的面积最大时点P的坐标为(,﹣);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).【分析】(1)根据已知抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0)代入即可求解;

(2)①先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;

②用含m的代数式表示出△PBC的面积,可得S是关于m的二次函数,即可求解;

(1)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标.【详解】(1)∵抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+1;(2)①设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC=﹣x+1.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.答:用含m的代数式表示线段PD的长为﹣m2+1m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+1=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.

根据题意,点E(2,1),

∴EF=CF=2,

∴EC=2,

根据菱形的四条边相等,

∴ME=EC=2,∴M(2,1-2)或(2,1+2)

当EM=EF=2时,M(2,1)∴点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).【点睛】本题考查了二次函数与方程、几何知识的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论