2022年广东省深圳市耀华实验学校八年级数学第一学期期末综合测试模拟试题含解析_第1页
2022年广东省深圳市耀华实验学校八年级数学第一学期期末综合测试模拟试题含解析_第2页
2022年广东省深圳市耀华实验学校八年级数学第一学期期末综合测试模拟试题含解析_第3页
2022年广东省深圳市耀华实验学校八年级数学第一学期期末综合测试模拟试题含解析_第4页
2022年广东省深圳市耀华实验学校八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有()A.1个 B.2个 C.3个 D.4个2.“对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角3.若实数满足,则的值为()A.2或 B. C. D.4.下列二次根式中,最简二次根式是()A. B. C. D.5.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB⊥OA,且AB=1.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上()A.1和2之间B.2和1之间C.1和4之间D.4和5之间6.若分式有意义,则实数的取值范围是()A. B. C. D.7.下列各数组中,不是勾股数的是()A.,, B.,,C.,, D.,,(为正整数)8.将数据0.0000025用科学记数法表示为()A. B. C. D.9.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是(

)A.1号袋 B.2号袋 C.3号袋 D.4号袋10.下列各式中,是最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.12.若关于的分式方程的解为非负数,则的取值范围是___________.13.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.0000065毫米,该厚度用科学记数法表示为_____毫米.14.当x_____时,分式有意义.15.若,则可取的值为__________.16.在-2,π,,,0中,是无理数有______个.17.如图,在平面直角坐标系xOy中,点B(﹣1,3),点A(﹣5,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P的坐标为_____.18.约分:_______.三、解答题(共66分)19.(10分)如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为.(1)求的取值范围.(2)当时,问与是否全等,并说明理由.(3)时,若为等腰三角形,求的值.20.(6分)等边△ABC的边BC在射线BD上,动点P在等边△ABC的BC边上(点P与BC不重合),连接AP.(1)如图1,当点P是BC的中点时,过点P作于E,并延长PE至N点,使得.①若,试求出AP的长度;②连接CN,求证.(2)如图2,若点M是△ABC的外角的角平分线上的一点,且,求证:.21.(6分)如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,求∠EGF的度数.(写出过程并注明每一步的依据)22.(8分)(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC相交于E,与AB的延长线相交于F,使BF=CE.①已知△CDE的面积为1,AE=kCE,用含k的代数式表示△ABD的面积为;②求证:△AEF是等腰三角形;(2)如图2,在△ABC中,若∠1=2∠2,G是△ABC外一点,使∠3=∠1,AH∥BG交CG于H,且∠4=∠BCG﹣∠2,设∠G=x,∠BAC=y,试探究x与y之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当∠G=100°,AD=a时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,试用含a、k的代数式表示△PQM周长的最小值.(只需直接写出结果)23.(8分)平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.(1)请通过计算说明;(2)求证;(3)请直接写出的长为.24.(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:每人加工零件数540450300240210120人数112632(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?25.(10分)如图,在平面直角坐标系中,点,分别在轴,轴正半轴上.(1)的平分线与的外角平分线交于点,求的度数;(2)设点,的坐标分别为,,且满足,求的面积;(3)在(2)的条件下,当是以为斜边的等腰直角三角形时,请直接写出点的坐标.26.(10分)计算:(1)(2)分解因式(3)解分式方程

参考答案一、选择题(每小题3分,共30分)1、C【解析】①一个正数有两个平方根,它们互为相反数,和为0,故①正确;②立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,故②正确;③无限不循环小数是无理数,无限循环小数是有理数,故③错误;④实数和数轴上的点一一对应,故④正确,所以正确的有3个,故选C.2、B【分析】把命题的题设和结论互换即可得到逆命题.【详解】命题“对顶角相等”的逆命题是“如果两个角相等,那么它们是对顶角”,故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、C【分析】先根据二次根式有意义的条件求出x的取值范围,然后根据题意可知和异号,但是根据二次根式和绝对值的非负性可得或,解出x的值,找到在取值范围内的即可.【详解】有意义∴∵∴或∴或∵∴故选:C.【点睛】本题主要考查绝对值和二次根式的非负性,二次根式有意义的条件,掌握二次根式有意义的条件,绝对值和二次根式的非负性是解题的关键.4、C【分析】满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、∵,故不是最简二次根式,此选项错误;B、∵,故不是最简二次根式,此选项错误;C、是最简二次根式,此选项正确;D、,故不是最简二次根式,此选项错误.故选:C.【点睛】本题考查了最简二次根式,解题的关键是理解什么是最简二次根式.5、C【分析】根据勾股定理求出OB的长,从而得OP的长,进而即可得到点P在数轴上的位置.【详解】解:∵ABOA,OA=2,AB=1,∴根据勾股定理可得:,又∵以O为圆心,OB为半径作圆,所得圆弧交x轴为点P,∴OP=OB=,又∵1<<4,∴点P的位置位于1和4的中间,故选:C.【点睛】本题考察了勾股定理、数轴上点的表示方式、圆的概念辨析,解题的关键在于通过勾股定理求出圆的半径OB的长度,同时又要掌握圆上任意一点到圆心的距离相等.6、B【分析】分式有意义,则,求出x的取值范围即可.【详解】∵分式有意义,∴,解得:,故选B.【点睛】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.7、C【解析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、62+82=102,三边是正整数,能构成直角三角形,故是勾股数,此选项错误;B、92+402=412,三边是正整数,能构成直角三角形,故是勾股数,此选项错误;

C、82+122≠152,不是勾股数,此选项正确;

D、(5k)2+(12k)2=(13k)2,三边是正整数,能构成直角三角形,故是勾股数,此选项错误.

故选:C.【点睛】此题主要考查了勾股数,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故选:.【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.9、C【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:

故选C.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.10、D【分析】根据最简二次根式的概念对每个选项进行判断即可.【详解】A、,不是最简二次根式,此选项不正确;B、,不是最简二次根式,此选项不正确;C、,不是最简二次根式,此选项不正确;D、,不能再进行化简,是最简二次根式,此选项正确;故选:D.【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.二、填空题(每小题3分,共24分)11、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【点睛】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.12、且【分析】在方程的两边同时乘以2(x-1),解方程,用含a的式子表示出x的值,再根据x≥0,且x≠1,求解即可.【详解】解:两边同时乘以2(x-1),得:4x-2a=x-1,解得x=,由题意可知,x≥0,且x≠1,∴,解得:且,故答案为:且.【点睛】本题主要考查分式方程的解,熟练应用并准确计算是解题的关键.13、【分析】一个较小的数可表示为:的形式,其中1≤,据此可得结论.【详解】将0.0000065用科学记数法法表示,其中则原数变为6.5,小数点需要向右移动6为,故n=6故答案为:【点睛】本题考查用科学记数法表示较小的数,需要注意,科学记数法还可以表示较大的数,形式为:.14、≠【分析】分母不为零,分式有意义,根据分母不为1,列式解得x的取值范围.【详解】当1-2x≠1,即x≠时,分式有意义.故答案为x≠.【点睛】本题主要考查分式有意义的条件:分式有意义,则分母不能为1.15、或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵,

∴当1-3x=2时,x=,原式=()2=1,

当x=2时,原式=11=1.

故答案为:或2.【点睛】本题考查零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.16、1【分析】无理数是指无限不循环小数,根据定义判断即可.【详解】解:无理数有π,,共1个,故答案为:1.【点睛】本题考查了对无理数定义的理解和运用,注意:无理数包括:①含π的,②一些有规律的数,③开方开不尽的根式.17、(﹣2,﹣4)【分析】将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.求出直线BK的解析式,利用方程组确定交点P坐标即可【详解】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.设直线PB的解析式为y=kx+b,把B(﹣1,3),K(﹣,﹣)代入得,解得∵直线BK的解析式为y=7x+10,由,解得,∴点P坐标为(﹣2,﹣4),故答案为(﹣2,﹣4).【点睛】本题考查利用一次函数图像的几何变换求解交点的问题,解题的关键是要充分利用特殊角度45°角进行几何变换,求解直线BP的解析式.18、【分析】根据分式的运算法则即可求解.【详解】=故答案为:.【点睛】此题主要考查分式的除法,解题的关键是熟知分式的性质.三、解答题(共66分)19、(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.【详解】(1)依题意,,.(2)时,与全等,证明:时,,,在和中,∵,,点是的中点,,,,(SAS).(3)①当时,有;②当,有,∵,∴(舍去);③当时有,∴;综上,当或时,为等腰三角形.【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.20、(1)①AP;②证明见解析;(2)证明见解析.【分析】(1)①根据点P是BC的中点,利用等腰三角形三线合一的性质得AP⊥BC,再利用勾股定理即可求得答案;②根据轴对称的性质,证得∠NCE=∠PCE=,从而证得结论;(2)作∠CBF=60°,BF与MC的延长线相交于点F,连接PF,证明△BFC是等边三角形,证得△ABP△FBP,PM=PF,∠PMC=∠PFC,根据三角形外角的性质可得结论.【详解】(1)①在等边△ABC中,∵点P是BC的中点,,∴AP⊥BC,,∴AP=;②∵且,∴点N与点P关于直线AC对称,∴∠NCE=∠PCE=,∴∠NCD=180∠NCE∠PCE=,∴∠NCD=∠B=,∴;(2)作∠CBF=60°,BF与MC的延长线相交于点F,连接PF,如图:∵△ABC是等边三角形,

∴∠ABC=∠ACB=60,

∴∠ACD=120,

∵CM平分∠ACD,

∴∠DCM=∠BCF=60,

∵∠CBF=60,

∴∠FBC=∠BCF=∠BFC=60,

∴△BFC是等边三角形,∵△ABC和△BFC都是等边三角形,

∴AB=BC=BF,

在△ABP和△FBP中,,∴△ABP△FBP,∴AP=PF,∠BAP=∠BFP,

∵AP=PM,

∴PM=PF,

∴∠PMC=∠PFC,∵∠MCD=∠PMC+∠CPM=60,

∠BFC=∠BFP+∠PFC=60,

∴∠CPM=∠BFP=∠BAP,

∵∠APC=∠ABC+∠BAP=∠APM+∠CPM,

∴∠APM=60.【点睛】本题是三角形综合题目,考查了等边三角形的性质和判定,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.21、详见解析【分析】根据平行线以及角平分线的性质进行求解即可.【详解】解:(两直线平行,同旁内角互补)又;(等式性质)平分;(角平分线的定义)又,.(两直线平行,内错角相等)【点睛】本题考查了平行线的角度问题,掌握平行线的性质以及判定、角平分线的定义是解题的关键.22、(1)①k+1;②见解析;(2)y=x+45°,理由见解析;(3)【分析】(1)①先根据AE与CE之比求出△ADE的面积,进而求出ADC的面积,而D中BC中点,所以△ABD面积与△ADC面积相等;②延长BF至R,使FR=BF,连接RC,注意到D是BC中点,过B过B点作BG∥AC交EF于G.得,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P点关于FA、FD的对称点P'、P'',则PQ+QM+PM=P'Q+QM+MP“≥P'P''=FP,当FP垂直AD时取得最小值,即最小值就是AD边上的高,而AD已知,故只需求出△ADF的面积即可,根据AE=kEC,AE=AF,CE=BF,可以将△ADF的面积用k表示出来,从而问题得解.【详解】解:(1)①∵AE=kCE,∴S△DAE=kS△DEC,∵S△DEC=1,∴S△DAE=k,∴S△ADC=S△DAE+S△DEC=k+1,∵D为BC中点,∴S△ABD=S△ADC=k+1.②如图1,过B点作BG∥AC交EF于G.∴,在△BGD和△CED中,,∴(ASA),∴BG=CE,又∵BF=CE,∴BF=BG,∴,∴∴AF=AE,即△AEF是等腰三角形.(2)如图2,设AH与BC交于点N,∠2=α.则∠3=∠1=2∠2=2α,∵AH∥BG,∴∠CNH=∠ANB=∠3=2α,∵∠CNH=∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG﹣∠2,∴∠BCG=∠2+∠4=2α,在△BGC中,,即:,在△ABC中,,即:,联立消去得:y=x+45°.(3)如图3,作P点关于FA、FD的对称点P'、P'',连接P'Q、P'F、PF、P''M、P''F、P'P'',则FP'=FP=FP'',PQ=P'Q,PM=P''M,∠P'FQ=∠PFQ,∠P''FM=∠PFM,∴∠P'FP''=2∠AFD,∵∠G=100°,∴∠BAC=∠G+45°=120°,∵AE=AF,∴∠AFD=30°,∴∠P'FP''=2∠AFD=60°,∴△FP'P''是等边三角形,∴P'P''=FP'=FP,∴PQ+QM+PM=P'Q+QM+MP''≥P'P''=FP,当且仅当P'、Q、M、P''四点共线,且FP⊥AD时,△PQM的周长取得最小值.,,,,,当时,,的周长最小值为.【点睛】本题是三角形综合题,涉及了三角形面积之比与底之比的关系、全等三角形等腰三角形性质和判定、轴对称变换与最短路径问题、等边三角形的判定与性质等众多知识点,难度较大.值得强调的是,本题的第三问实际上是三角形周长最短问题通过轴对称变换转化为两点之间线段最短和点到直线的距离垂线段最短.23、(1)证明见解析;(2)证明见解析;(3).【解析】(1)先根据点A坐标可得OA的长,再根据即可得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:1.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.24、(1)平均数是:260件,中位数是:240件,众数是:240件;(2)240件.【分析】(1)利用加权平均数公式即可求得平均数,中位数是小到大的顺序排列时,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据(1)求得的中位数,平均数以及众数进行比较,根据实际情况进行判断.【详解】解:(1)这15人该月加工零件总数==3900(件),这15人该月加工零件的平均数:(件,中位数是:240件,众数是:240件;(2)240件合适.因为当定额为240件时,有10人达标,4人超额完成,有利于提高大多数工人的积极性.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.25、(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)【分析】(1)根据角平分线的定义即可得出∠BAC=∠OAB、∠DBA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论