贵州省兴仁县2022年数学九上期末统考试题含解析_第1页
贵州省兴仁县2022年数学九上期末统考试题含解析_第2页
贵州省兴仁县2022年数学九上期末统考试题含解析_第3页
贵州省兴仁县2022年数学九上期末统考试题含解析_第4页
贵州省兴仁县2022年数学九上期末统考试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如果点与点关于原点对称,则()A.8 B.2 C. D.2.如图,四边形ABCD是⊙O的内接四边形,AB=AD,若∠C=70º,则∠ABD的度数是()A.35º B.55º C.70º D.110º3.如图,内接于⊙,是⊙的直径,,点是弧上一点,连接,则的度数是()A.50° B.45° C.40° D.35°4.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个5.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组6.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为()A. B.C. D.7.如图,点、、在上,,,则的度数为()A. B. C. D.8.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE9.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.10.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.11.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,3,4 C.3,4,7 D.5,2,812.如图,在正方形网格中,△ABC的三个顶点都在格点上,则cosB的值为()A. B. C. D.1二、填空题(每题4分,共24分)13.已知是关于的方程的一个根,则___________.14.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.15.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.17.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为__________米.18.如果一元二次方程有两个相等的实数根,那么是实数的取值为________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,抛物线与轴交于两点,点.(1)当时,求抛物线的顶点坐标及线段的长度;(2)若点关于点的对称点恰好也落在抛物线上,求的值.20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.21.(8分)已知,二次三项式﹣x2+2x+1.(1)关于x的一元二次方程﹣x2+2x+1=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+1的图象与线段AB只有一个交点,求n的取值范围.22.(10分)如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.23.(10分)解方程:x(x﹣3)+6=2x.24.(10分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形);(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.25.(12分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.26.教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图乙射靶成绩的折线统计图()请你根据图中的数据填写下表:平均数众数方差甲__________乙____________________()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,

∴m=3,n=-5,

∴m+n=-2,

故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.2、A【分析】由圆内接四边形的性质,得到∠BAD=110°,然后由等腰三角形的性质,即可求出∠ABD的度数.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=70°,∴∠BAD=110°,∵AB=AD,∴.故选:A.【点睛】本题考查了圆内接四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键是熟练掌握所学的性质,正确得到∠BAD=110°.3、A【分析】根据直径所对的圆周角是直角可知∠ABC=90°,计算出∠BAC的度数,再根据同弧所对的圆周角相等即可得出∠D的度数.【详解】解:∵是⊙的直径,∴∠ABC=90°,又∵,∴∠BAC=90°-40°=50°,又∵∠BAC与所对的弧相等,∴∠D=∠BAC=50°,故答案为A.【点睛】本题考查了直径所对的圆周角是直角、同弧所对圆周角相等等知识点,解题的关键是熟知直径所对的圆周角是直角及同弧所对圆周角相等.4、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【点睛】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.5、A【解析】试题解析:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等,四条边都相等,符合相似的条件;④不相似,虽然其四个角均相等,因为没有指明边的情况,不符合相似的条件;⑤不相似,因为菱形的角不一定对应相等,不符合相似的条件;⑥相似,因为两正五边形的角相等,对应边成比例,符合相似的条件;所以正确的有③⑥.故选A.6、D【分析】先根据抛物线与二次函数的图像相同,开口方向相同,确定出二次项系数a的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数的图像相同,开口方向相同,∵顶点坐标为∴抛物线的表达式为故选:D.【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.7、C【分析】根据平行线的性质及圆周角定理即可求解.【详解】∵,∴,∵,∴,故选:C.【点睛】本题主要考查了圆周角定理及平行线的性质,熟练运用相关知识点是解决本题的关键.8、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB与BD:AB=CE:ACAB:AC=AD:AE,根据平行线分线段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【详解】A、∵AD:DB=AE:EC,∴DE∥BC,故本选项能判定DE∥BC;

B、由DE:BC=AD:AB,不能判定DE∥BC,故本选项不能判定DE∥BC.

C、∵BD:AB=CE:AC,∴DE∥BC,故本选项能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本选项能判定DE∥BC.

所以选B.【点睛】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.9、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.10、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).​故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.11、B【解析】根据三角形三边关系定理得出:如果较短两条线段的和大于最长的线段,则三条线段可以构成三角形,由此判定即可.【详解】A.1+2=3,不能构成三角形,故此选项错误;B.2+3>4,能构成三角形,故此选项正确;C.3+4=7,不能构成三角形,故此选项错误;D.5+2<8,不能构成三角形,故此选项错误.故选:B.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.12、B【分析】先根据勾股定理求出AB的长,再根据余弦的定义求解即可.【详解】∵AC=2,BC=2,∴AB=,∴cosB=.故选B.【点睛】本题考查了勾股定理,以及锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.二、填空题(每题4分,共24分)13、2024【分析】把代入方程得出的值,再整体代入中即可求解.【详解】把代入方程得:,即∴故填:2024.【点睛】本题考查一元二次方程的解法,运用整体代入法是解题的关键.14、(﹣3,1)【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.15、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,

∴新抛物线顶点坐标为(-2,-1),

∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.

故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式组得0<a≤1,综合可得0<a<1,故满足条件的整数a的值为1,2.【详解】解不等式组,可得,∵不等式组有且仅有5个整数解,∴,∴0<a≤1,解分式方程,可得x=,即a≠1又∵分式方程有非负数解,∴x≥0,即≥0,解得a≤5,a≠1∴0<a<1,∴满足条件的整数a的值为1,2,∴满足条件的整数a的值之和是1+2=1,故答案为:1.【点睛】考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题,熟练掌握和灵活运用相关知识是解题的关键.17、【解析】设圆心为O,半径长为r米,根据垂径定理可得AD=BD=6,则OD=(r-4),然后利用勾股定理在Rt△AOD中求解即可.【详解】解:设圆心为O,半径长为r米,可知AD=BD=6米,OD=(r-4)米在Rt△AOD中,根据勾股定理得:,解得r=6.5米,即半径长为6.5米.故答案为6.5【点睛】本题考查了垂径定理的应用,要熟练掌握勾股定理的性质,能够运用到实际生活当中.18、【分析】根据一元二次方程有两个相等的实数根,得知其判别式的值为0,即=32-4×2×m=0,解得m即可.【详解】解:根据题意得,=32-4×2×m=0,

解得m=.故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与=b2-4ac有如下关系:当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程无实数根.三、解答题(共78分)19、(1)顶点坐标为(3,9),OA=6;(2)m=2【解析】(1)把m代入抛物线,根据二次函数的图像与性质即可求出顶点,与x轴的交点,即可求解;(2)先用含m的式子表示A点坐标,再根据对称性得到A’的坐标,再代入抛物线即可求出m的值.【详解】解:(1)当y=0时,,即O(0,0),A(6,0)∴OA=6把x=3代入y=-32+69∴顶点坐标为(3,9)(2)当y=0时,,即A(m,0)∵点A关于点B的对称点A′∴A′(-m,-8)把A′(-m,-8)代入得m1=2,m2=-2(舍去)∴m=2.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知坐标的对称性.20、(1)见解析(2)AF=2【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=21、(1)m=7;(2)n≤﹣2或1≤n<2.【分析】(1)方程化为(m﹣1)x2+(2﹣m)x+1=0,由已知可得m≠1,△=m2﹣8m+8=(m﹣4)2﹣8,由已知可得m﹣4=±1,解得m=7或m=1(舍);(2)由已知可得A(,0),B(0,n),根据题意可得,当≤﹣1,n<1时,n≤﹣2;当>﹣1,n≥1时,n≥1;当>1,n≤1时,n不存在;当<1,n≥1时,1≤n<2;综上所述:n≤﹣2或1≤n<2.【详解】解:(1)方程化为(m﹣1)x2+(2﹣m)x+1=0,由已知可得m≠1,△=m2﹣8m+8=(m﹣4)2﹣8,∵m为整数,方程的根为有理数,∴m﹣4=±1,∴m=7或m=1(舍);(2)由已知可得A(,0),B(0,n),∵函数y=﹣x2+2|x|+1的图象与线段AB只有一个交点,当≤﹣1,n<1时,∴n≤﹣2;当>﹣1,n≥1时,∴n≥1;当>1,n≤1时,n不存在;当<1,n≥1时,1≤n<2;综上所述:n≤﹣2或1≤n<2.【点睛】本题考查二次函数、一次函数的图象及性质;熟练掌握二次函数、一次函数的图象及性质,一元二次方程根的判别是解题的关键.22、(1)5m,(2)20%【分析】(1)设通道的宽度为x米.由题意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程.【详解】(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.23、x1=2,x2=1.【分析】先去掉括号,再把移到等号的左边,再根据因式分解法即可求解.【详解】解:x(x﹣1)+6=2x,x2﹣1x+6﹣2x=0,x2﹣5x+6=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.【点睛】本题考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.24、(1)△DFG或△DHF;(2).【分析】(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.【详解】(1)、的面积为:,只有△DFG或△DHF的面积也为6且不与△ABC全等,与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)、画树状图如图所示:由树状图可知共有6种等可能结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,所以所画三角形与△ABC面积相等的概率P=答:所画三角形与△ABC面积相等的概率为.【点睛】本题综合考查了三角形的面积和概率.25、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论