下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.4 B.4 C.6 D.83.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.B.C.D.4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C. D.5.如图,在Rt△ABC中,CD是斜边AB上的中线,若CD=5,AC=6,则tanB的值是()A. B. C. D.6.如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm7.对于函数,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小8.解方程,选择最适当的方法是()A.直接开平方法 B.配方法 C.公式法 D.因式分解法9.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为,则的值为()A. B. C. D.10.如图,在中..是的角平分线.若在边上截取,连接,则图中等腰三角形共有()A.3个 B.5个 C.6个 D.2个11.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:1312.如图,矩形的面积为4,反比例函数()的图象的一支经过矩形对角线的交点,则该反比例函数的解析式是()A. B. C. D.二、填空题(每题4分,共24分)13.函数是关于反比例函数,则它的图象不经过______的象限.14.在平面直角坐标系xOy中,点O的坐标为O,□OABC的顶点A在反比例函数的图象上,顶点B在反比例函数的图象上,点C在x轴正半轴上,则□OABC的面积是________15.质地均匀的骰子,6个面上分别标有数字1,2,3,4,5,6.同时抛掷这样的两枚骰子,落地后朝上的两个面上的数字之和为4的倍数的概率为__________.16.如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.17.抛物线在对称轴_____(填“左侧”或“右侧”)的部分是下降的.18.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.三、解答题(共78分)19.(8分)如图:反比例函数的图象与一次函数的图象交于、两点,其中点坐标为.(1)求反比例函数与一次函数的表达式;(2)观察图象,直接写出当时,自变量的取值范围;(3)一次函数的图象与轴交于点,点是反比例函数图象上的一个动点,若,求此时点的坐标.20.(8分)如图,无人机在空中处测得地面、两点的俯角分别为60〫、45〫,如果无人机距地面高度米,点、、在同水平直线上,求、两点间的距离.(结果保留根号)21.(8分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)22.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.23.(10分)某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x>80).(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?24.(10分)如图,二次函数y=ax2+bx+c过点A(﹣1,0),B(3,0)和点C(4,5).(1)求该二次函数的表达式及最小值.(2)点P(m,n)是该二次函数图象上一点.①当m=﹣4时,求n的值;②已知点P到y轴的距离不大于4,请根据图象直接写出n的取值范围.25.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有_________名学生参加;(2)直接写出表中_________,_________;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为_________.26.教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.解:∵a=3,b=﹣2,c=1,∴△=b2﹣4ac=4﹣12=﹣8<0,∴关于x的方程3x2﹣2x+1=0没有实数根.故选:C.考点:根的判别式.2、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.3、D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:.故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.4、D【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB,A、当∠AED=∠B时,△ABC∽△AED,故本选项不符合题意;B、当∠ADE=∠C时,△ABC∽△AED,故本选项不符合题意;C、当=时,△ABC∽△AED,故本选项不符合题意;D、当=时,不能推断△ABC∽△AED,故本选项符合题意;故选D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.5、C【解析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC的长度,然后根据锐角的正切等于对边比邻边解答.【详解】∵CD是斜边AB上的中线,CD=5,
∴AB=2CD=10,
根据勾股定理,BC=tanB=.
故选C.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.6、B【分析】由平行可得=,再由条件可求得=,代入可求得BC.【详解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故选:B.【点睛】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段成比例是解题的关键.7、C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.8、D【解析】根据方程含有公因式,即可判定最适当的方法是因式分解法.【详解】由已知,得方程含有公因式,∴最适当的方法是因式分解法故选:D.【点睛】此题主要考查一元二次方程解法的选择,熟练掌握,即可解题.9、D【分析】过点C作CD⊥x轴交于点D,连接OC,则CD∥OB,得AO=OD,CD=2OB,进而得的面积为4,即可得到答案.【详解】过点C作CD⊥x轴交于点D,连接OC,则CD∥OB,∵,∴AO=OD,∴OB是∆ADC的中位线,∴CD=2OB,∵的面积为,∴的面积为4,∵点在反比例函数的图象上,∴k=2×4=8,故选D.【点睛】本题主要考查反比例函数比例系数k的几何意义,添加辅助线,求出的面积,是解题的关键.10、B【分析】根据等腰三角形的判定及性质和三角形的内角和定理求出各角的度数,逐一判断即可.【详解】解:∵,∴∠ABC=∠ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC为等腰三角形∵是的角平分线∴∠ABD=∠CBD=∠ABC=36°∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=∠A∴∠BDC=∠ACB,DA=DB,△DBC为等腰三角形∴BC=BD,△BCD为等腰三角形∵∴∠BED=∠BDE=(180°-∠ABD)=72°,△BEC为等腰三角形∴∠AED=180°-∠BED=108°∴∠EDA=180°-∠AED-∠A=36°∴∠EDA=∠A∴ED=EA,△EDA为等腰三角形共有5个等腰三角形故选B.【点睛】此题考查的是等腰三角形的判定及性质和三角形的内角和,掌握等边对等角、等角对等边和三角形的内角和定理是解决此题的关键.11、B【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质得到AB:DO═2:3,进而得出答案.【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.【点睛】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.12、D【分析】过P点作PE⊥x轴于E,PF⊥y轴于F,根据矩形的性质得S矩形OEPF=S矩形OACB=1,然后根据反比例函数的比例系数k的几何意义求解.【详解】过P点作PE⊥x轴于E,PF⊥y轴于F,如图所示:
∵四边形OACB为矩形,点P为对角线的交点,
∴S矩形OEPF=S矩形OACB=×4=1.
∴k=-1,
所以反比例函数的解析式是:.故选:D【点睛】考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题(每题4分,共24分)13、第一、三象限【解析】试题解析:函数是关于的反比例函数,解得:比例系数它的图象在第二、四象限,不经过第一、三象限.故答案为第一、三象限.14、3【分析】根据平行四边形的性质和反比例函数系数k的几何意义即可求得.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,
∵四边形OABC是平行四边形,
∴AB∥OC,OA=BC,
∴BE⊥y轴,
∴OE=BD,
∴Rt△AOE≌Rt△CBD(HL),
根据系数k的几何意义,S矩形BDOE=5,S△AOE=1,
∴四边形OABC的面积=5-1-1=3,
故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性15、【分析】采用列表法列举所有的可能性,找出数字和为4的倍数的情况数,再根据概率公式求解.【详解】由题意,列表如下:12345611+1=21+2=31+3=41+4=51+5=61+6=722+1=32+2=42+3=52+4=62+5=72+6=833+1=43+2=53+3=63+4=73+5=83+6=944+1=54+2=64+3=74+4=84+5=94+6=1055+1=65+2=75+3=85+4=95+5=105+6=1166+1=76+2=86+3=96+4=106+5=116+6=12总共的可能性由36种,其中和为4的倍数的情况有9种,所以数字之和为4的倍数的概率P=,故答案为.【点睛】本题考查简单概率的计算,熟练掌握列表法求概率是解题的关键.16、【解析】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.根据反比例函数y和直线AB组成的图形关于直线y=x对称,求出E、F、C、D的坐标即可.【详解】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y=﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.设C(x,-x+3),∴CE=,解得:x=(负数舍去),∴x=,-x+3=,∴C(),∴m==.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.17、右侧【解析】根据二次函数的性质解题.【详解】解:∵a=-1<0,
∴抛物线开口向下,顶点是抛物线的最高点,抛物线在对称轴右侧的部分是下降的,
故答案为:右侧.点睛:本题考查了二次函数的性质,熟练掌握性质上解题的关键.18、【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.三、解答题(共78分)19、(1),;(2)或;(3)(12,)或(-12,)【分析】(1)把A点坐标代入中求出k得到反比例函数解析式,把A点坐标代入中求出b得到一次函数解析式;(2)由函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可;(3)设P(x,),先利用一次解析式解析式确定C(0,1),再根据三角形面积公式得到,然后解绝对值方程得到x的值,从而得到P点坐标.【详解】解:(1)把A(1,2)代入得k=2,∴反比例函数解析式为,把A(1,2)代入得,解得,∴一次函数解析式为;(2)由函数图象可得:当y1<y2时,-2<x<0或x>1;(3)设P(x,),当x=0时,,∴C(0,1),∵S△OCP=6,∴,解得,∴P(12,)或(-12,).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.20、A、B两点间的距离为100(1+)米【分析】如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.【详解】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在中,∵=,∴AD==100,在中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.21、(1)甲选择A部电影的概率为;(2)甲、乙、丙3人选择同一部电影的概率为.【解析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.【详解】(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P=,答:甲选择A部电影的概率为;(2)甲、乙、丙3人选择电影情况如图:由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,∴甲、乙、丙3人选择同一部电影的概率P=,答:甲、乙、丙3人选择同一部电影的概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.22、(1)见解析;(2)DF=2.【分析】(1)连接OD,求出AC∥OD,求出OD⊥DE,根据切线的判定得出即可;
(2)求出∠1=∠2=∠F=30°,求出AD=DF,解直角三角形求出AD,即可求出答案.【详解】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠2=∠ADO,∴∠1=∠ADO,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∴OD⊥ED,∵OD过O,∴DE与⊙O相切;(2)解:∵AB=AC,AD⊥BC,∴∠1=∠2,CD=BD,∵CD=BF,∴BF=BD,∴∠3=∠F,∴∠4=∠3+∠F=2∠3,∵OB=OD,∴∠ODB=∠4=2∠3,∵∠ODF=90°,∴∠3=∠F=30°,∠4=∠ODB=60°,∵∠ADB=90°,∴∠2=∠1=30°,∴∠2=∠F,∴DF=AD,∵∠1=30°,∠AED=90°,∴AD=2ED,∵AE2+DE2=AD2,AE=3,∴AD=2,∴DF=2.【点睛】本题考查了等腰三角形的性质,三角形的外角性质,圆周角定理,切线的判定定理,解直角三角形等知识点,能综合运用定理进行推理是解此题的关键.23、(1)x的值为90;(2)每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.【解析】(1)直接利用每件利润×销量=2400,进而得出一元二次方程解出答案即可;(2)利用每件利润×销量=利润,先用x表示出每件的利润和销量,进而得出利润关于x的二次函数解析式,再利用二次函数的性质求最值即可.【详解】解:(1)由题意可得:(x﹣60)[100﹣2(x﹣80)]=2400,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100(不合题意舍去),答:x的值为90;(2)设利润为w元,根据题意可得:w=(x﹣60)[100﹣2(x﹣80)]=﹣2x2+380x﹣15600=﹣2(x﹣95)2+2450,故每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是二次函数的实际应用,这是二次函数应用问题中的常见题型,解决问题的关键是根据题意中的数量关系求出函数解析式.24、(1)y=x2﹣2x﹣3,-4;(2)①1;②﹣4≤n≤1【分析】(1)根据题意,设出二次函数交点式,点C坐标代入求出a值,把二次函数化成顶点式即可得到最小值;(2)①m=-4,直接代入二次函数表达式,即可求出n的值;②由点P到y轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届河南省鹤壁市高一数学第一学期期末学业质量监测模拟试题含解析
- 医疗数据存储介质的抗量子加密方案
- 胃炎X线表现课件
- 医疗数据压缩效率与区块链存储平衡
- 医疗数据共享的知识产权战略
- 医疗数据共享的激励机制创新
- 文库发布:肾病课件
- 肾外科课件教学课件
- 医疗数据共享中的区块链加密算法
- 护理礼仪的现代意义
- 除夕烟火秀活动方案
- 2025年自考14104人力资源管理(中级)模拟试题及答案
- 国企合作加盟合同范本
- 2025年党的二十届四中全会精神宣讲稿及公报解读辅导报告
- 2025年企业员工激励机制管理模式创新研究报告
- 2025年广东省春季高考语文试卷(解析卷)
- DB3205∕T 1139-2024 巡游出租汽车营运管理规范
- 城市老旧建筑改造中的结构加固与性能提升
- 四害消杀员工安全培训课件
- 贸易跟单专业知识培训课件
- 国资委机关公开遴选公务员面试经典题及答案
评论
0/150
提交评论