下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+c的图象如图所示,若点A(-2.2,y1),B(-3.2,y2)是图象上的两点,则y1与y2的大小关系是().A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定2.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根3.抛物线y=-2(x+3)2-4的顶点坐标是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)4.如图,为的直径,,为上的两点.若,,则的度数是()A. B. C. D.5.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A. B. C. D.6.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇7.如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是A. B. C. D.8.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交9.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于C.从装满白球的袋子里摸出红球D.大年初一会下雨10.已知,则的度数是()A.30° B.45° C.60° D.90°二、填空题(每小题3分,共24分)11.如图,人字梯,的长都为2米.当时,人字梯顶端高地面的高度是____米(结果精确到.参考依据:,,)12.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.13.反比例函数y=的图象在第一、三象限,则m的取值范围是_______.14.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为____.15.若反比例函数y=的图象与一次函数y=﹣x+3的图象的一个交点到x轴的距离为1,则k=_____.16.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似,两三角形位于点B同侧且相似比是3,则点C的对应顶点C1的坐标是_____.17.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.18.如图,△ABC的内切圆与三边分别切于点D,E,F,若∠C=90°,AD=3,BD=5,则△ABC的面积为_____.三、解答题(共66分)19.(10分)已知抛物线.(1)当x为何值时,y随x的增大而减小;(2)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出平移后的抛物线表达式.20.(6分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?21.(6分)如图,在中,,为边上的中点,交于点,.(1)求的值;(2)若,求的值.22.(8分)某日王老师佩戴运动手环进行快走锻炼两次锻炼后数据如下表,与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的倍.设王老师第二次锻炼时平均步长减少的百分率为.注:步数平均步长距离.项目第一次锻炼第二次锻炼步数(步)①_______平均步长(米/步)②_______距离(米)(1)根据题意完成表格;(2)求.23.(8分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人.(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率.24.(8分)计算:cos30°•tan60°+4sin30°.25.(10分)解方程:(x+3)2=2x+1.26.(10分)在等边中,点为上一点,连接,直线与分别相交于点,且.(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据抛物线的对称性质进行解答.【详解】因为抛物线y=ax2+bx+c的对称轴是x=−3,点A(-2.2,y1),B(-3.2,y2),所以点B与对称轴的距离小于点A到对称轴的距离,所以y1<y2故选:A.【点睛】考查了二次函数的性质,二次函数图象上点的坐标特征.解题时,利用了二次函数图象的对称性.2、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.3、C【解析】试题分析:抛物线的顶点坐标是(-3,-4).故选C.考点:二次函数的性质.4、B【分析】先连接OC,根据三条边都相等可证明△OCB是等边三角形,再利用圆周角定理即可求出角度.【详解】解:如图,连接OC.∵AB=2,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=∠COB=30°.故选:B.【点睛】本题考查圆周角定理,等边三角形的判定及性质等知识,作半径是圆中常用到的辅助线需熟练掌握.5、B【详解】解:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.6、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】由可得到∽,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵,∴,故不正确;B.∵,∴,故不正确;C.∵,∴∽,∽,,.,故正确;D.∵,∴,故不正确;故选C.【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.8、D【分析】根据直线和圆的位置关系来判断.【详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.9、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚硬币10次,有5次正面朝上是随机事件;
B、任意一个五边形的外角和是360°是确定事件;
C、从装满白球的袋子里摸出红球是不可能事件;
D、大年初一会下雨是随机事件,
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【解析】根据特殊角三角函数值,可得答案.【详解】解:由,得α=60°,
故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.二、填空题(每小题3分,共24分)11、1.5.【分析】在中,根据锐角三角函数正弦定义即可求得答案.【详解】在中,∵,,∴,∴.故答案为1.5.【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.12、60°【解析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°13、m>1【分析】由于反比例函数y=的图象在一、三象限内,则m-1>0,解得m的取值范围即可.【详解】解:由题意得,反比例函数y=的图象在一、三象限内,则m-1>0,解得m>1.故答案为m>1.【点睛】本题考查了反比例函数的性质,解题的关键是熟练的掌握反比例函数的性质.14、(x﹣1)x=2256【分析】根据题意得:每人要写(x-1)条毕业感言,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要写(x−1)条毕业感言,有x个人,∴全班共写:(x−1)x=2256,故答案为:(x−1)x=2256.【点睛】此题考查一元二次方程,解题关键在于结合实际列一元二次方程即可.15、2或﹣1【分析】分反比例函数y=在第一象限和第四象限两种情况解答.【详解】解:当反比例函数y=在第一象限时,﹣x+3=1,解得x=2,即反比例函数y=的图象与一次函数y=﹣x+3的图象交于点(2,1),∴k=2×1=2;当反比例函数y=在第四象限时,﹣x+3=﹣1,解得x=1,即反比例函数y=的图象与一次函数y=﹣x+3的图象交于点(1,﹣1),∴k=1×(﹣1)=﹣1.∴k=2或﹣1.故答案为:2或﹣1【点睛】本题主要考察反比例函数和一次函数的交点问题,分象限情况作答是解题关键.16、(0,-3)【解析】根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形在改变的过程中保持形状不变(大小可变)即可得出答案.【详解】把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,所画图形如图所示,C1坐标为(0,-3).【点睛】本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数.17、【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=.故答案是:.【点睛】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.18、1【分析】直接利用切线长定理得出AD=AF=3,BD=BE=5,FC=EC,再结合勾股定理得出FC的长,进而得出答案.【详解】解:∵Rt△ABC的内切圆⊙I分别与斜边AB、直角边BC、CA切于点D、E、F,AD=3,BD=5,∴AD=AF=3,BD=BE=5,FC=EC,设FC=EC=x,则(3+x)2+(5+x)2=82,整理得,x2+8x﹣5=0,解得:(不合题意舍去),则,故Rt△ABC的面积为故答案为1.【点睛】本题考查了切线长定理和勾股定理,解决本题的关键是正确理解题意,熟练掌握切线长定理的相关内容,找到线段之间的关系.三、解答题(共66分)19、(1);(2).【分析】(1)由题意利用配方法将抛物线的一般解析式化为顶点式,再根据二次函数的性质进行分析即可求得;(2)由题意根据平移的规律即左加右减,上加下减进行分析即可求得平移后的抛物线表达式.【详解】解:(1)配方,得.∵,∴抛物线开口向上.∴当时,y随x的增大而减小.(2)抛物线向右平移2个单位,再向上平移2个单位得到新抛物线的表达式为:.【点睛】本题考查二次函数的性质以及二次函数图象的平移规律,其中利用配方法把解析式由一般式变为顶点式是解答本题的关键.20、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.21、(1)(2)【分析】(1)根据题意证出∠B=∠ADE,进而设出DE和AD的值,再结合勾股定理求出AE的值即可得出答案;(2)根据斜中定理求出AD和AB的值,结合∠B和∠AED的sin值求出AC和AE的值,相减即可得出答案.【详解】(1)∵,∴.又∵,∴.设,则.在中,,则.(2)∵为斜边上的中点,∴,∴.则,,∴.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.22、(1)①,②;(2)的值为.【分析】(1)①直接利用王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍,得出第二次锻炼的步数;②利用王老师第二次锻炼时平均步长减少的百分率为x,即可表示出第二次锻炼的平均步长(米/步);(2)根据题意第二次锻炼的总距离这一等量关系,建立方程求解进而得出答案.【详解】解:(1)①根据题意可得第二次锻炼步数为:,②第二次锻炼的平均步长(米/步)为:;(2)由题意,得.解得(舍去),.答:的值为.【点睛】本题主要考查一元二次方程的应用,根据题意正确表示出第二次锻炼的步数与步长是解题关键.23、(1)答案见解析;(2)【分析】(1)首先根据题意列表,由树形法可得所有等可能的结果;(2)由选出的是2名主持人恰好1男1女的情况,根据概率公式即可求得解.【详解】解:(1)用树状图表示如下:(A表示男生,B表示女生)由树状图知共有6种等可能结果(2)由树状图知:2名主持人1男1女有3种,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.24、.【分析】将特殊角的三角函数值代入求解.【详解】原式=×+4×,=+2,=.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.25、x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3),(x+3)2﹣2(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英文手写培训班课件
- α2AR-agonist-2-生命科学试剂-MCE
- 挪威美景介绍课件
- 苗圃技术安全培训计划课件
- 医用耗材集中采购协议(医院)2025年合同期限
- 艺考主持表演培训课件
- 猪场蓝耳、腹泻及细菌性疾病应急处理知识考试卷(有答案)
- 贵州国企招聘2025凯里瑞禾农业投资(集团)有限责任公司招聘笔试历年备考题库附带答案详解
- 艺术培训文案声乐课件
- 艺术培训安全计划课件
- 主板维修课件
- 2025黑龙江大庆市工人文化宫招聘工作人员7人考试历年真题汇编带答案解析
- 2026中央纪委国家监委机关直属单位招聘24人考试笔试模拟试题及答案解析
- 2026年内蒙古化工职业学院单招职业适应性考试必刷测试卷附答案解析
- 财务数字化转型与业财数据深度融合实施路径方案
- 后勤保障医院运维成本智能调控
- 循证护理在儿科护理中的实践与应用
- 少儿无人机课程培训
- GB 46750-2025民用无人驾驶航空器系统运行识别规范
- 麻醉睡眠门诊科普
- 电力绝缘胶带施工方案
评论
0/150
提交评论