2023届江西南昌市西湖区第二十四中学数学八年级上册期末预测试题含解析_第1页
2023届江西南昌市西湖区第二十四中学数学八年级上册期末预测试题含解析_第2页
2023届江西南昌市西湖区第二十四中学数学八年级上册期末预测试题含解析_第3页
2023届江西南昌市西湖区第二十四中学数学八年级上册期末预测试题含解析_第4页
2023届江西南昌市西湖区第二十四中学数学八年级上册期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.2.如图,线段与交于点,且,则下面的结论中不正确的是()A. B.C. D.3.下列电子元件符号不是轴对称图形的是()A. B.C. D.4.已知,现把小棒依次摆放在两射线之间,并使小棒在两射线上,从开始,用等长的小棒依次向右摆放,其中为第1根小棒,且,若只能摆放9根小棒,则的度数可以是()A.6° B.7° C.8° D.9°5.若是完全平方式,则的值为()A.±8 B.或 C. D.6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是().A. B. C. D.7.下列数据的方差最大的是()A.3,3,6,9,9 B.4,5,6,7,8 C.5,6,6,6,7 D.6,6,6,6,68.实数a,b在数轴上的对应点如图所示,则|a﹣b|﹣的结果为()A.b B.2a﹣b C.﹣b D.b﹣2a9.如果把分式中的x和y都扩大5倍,那么分式的值()A.不变 B.缩小5倍 C.扩大2倍 D.扩大5倍10.下列各式中,计算正确的是()A. B. C. D.11.如果把分式中和都扩大10倍,那么分式的值()A.扩大2倍 B.扩大10倍 C.不变 D.缩小10倍12.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.14.已知一次函数的图像经过点(m,1),则m=____________.15.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________16.若=0,则x=_____.17.一组数据3,4,6,7,x的平均数为6,则这组数据的方差为_____.18.若,,,则的大小关系用“<”号排列为_________.三、解答题(共78分)19.(8分)如图,已知各顶点的坐标分别为,,,直线经过点,并且与轴平行,与关于直线对称.(1)画出,并写出点的坐标.(2)若点是内一点,点是内与点对应的点,则点坐标.20.(8分)如图,已知AB=DC,AC=BD,求证:∠B=∠C.21.(8分)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边长.22.(10分)解下列分式方程(1)(2)23.(10分)已知3m+n=1,且m≥n.(1)求m的取值范围(2)设y=3m+4n,求y的最大值24.(10分)解下列方程.(1)(2)25.(12分)如图,在中,点M为BC边上的中点,连结AM,D是线段AM上一点(不与点A重合).过点D作,过点C作,连结AE.(1)如图1,当点D与M重合时,求证:①;②四边形ABDE是平行四边形.(2)如图2,延长BD交AC于点H,若,且,求的度数.26.解方程:(1);(2).

参考答案一、选择题(每题4分,共48分)1、A【分析】甲型机器人每台万元,根据万元购买甲型机器人和用万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台万元,根据题意,可得故选.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2、B【分析】根据SSS可以证明△ABC≌△BAD,从而得到其对应角相等、对应边相等.【详解】解:A、根据SSS可以证明△ABC≌△BAD,故本选项正确;

B、根据条件不能得出OB,OC间的数量关系,故本选项错误;

C、根据全等三角形的对应角相等,得∠CAB=∠DBA,故本选项正确;

D、根据全等三角形的对应角相等,得∠C=∠D,故本选项正确.

故选:B.【点睛】此题综合考查了全等三角形的判定和性质,注意其中的对应关系.3、C【解析】根据轴对称图形的概念对各个选项进行判断即可.【详解】解:C中的图案不是轴对称图形,A、B、D中的图案是轴对称图形,

故选:C.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线对称.4、D【分析】根据等腰三角形的性质和三角形的外角性质可得∠A2A1A3=2θ,∠A3A2A4=3θ,……,以此类推,可得摆放第9根小棒后,∠A9A8A10=9θ,,由于只能放9根,则且,求得的取值范围即可得出答案.【详解】∵,∴∠AA2A1=∠BAC=θ,∴∠A2A1A3=2θ,同理可得∠A3A2A4=3θ,……以此类推,摆放第9根小棒后,∠A9A8A10=9θ,,∵只能放9根,∴即,解得,故选:D.【点睛】本题考查了等腰三角形的性质与三角形的外角性质,熟练掌握等边对等角,以及三角形的外角等于不相邻的两个内角之和,是解题的关键.5、B【分析】利用完全平方公式的结构特征得到关于m的方程,求解即可.【详解】解:∵是完全平方式,∴2(m-1)=±8解得m=5或m=-1.故选:B【点睛】本题考查了完全平方式,熟练掌握完全平方式的特点是解题的关键.6、C【分析】根据中心对称图形定义分析.【详解】A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.【点睛】考点:中心对称图形.7、A【分析】先计算出各组数据的平均数,再根据方差公式计算出各方差即可得出答案.【详解】解:A、这组数据的平均数为×(3+3+6+9+9)=6,方差为×[(3-6)2×2+(6-6)2+(9-6)2×2]=7.2;B、这组数据的平均数为×(4+5+6+7+8)=6,方差为×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2;C、这组数据的平均数为×(5+6+6+6+7)=6,方差为×[(5-6)2+(6-6)2×3+(7-6)2]=0.4;D、这组数据的平均数为×(6+6+6+6+6)=6,方差为×(6-6)2×5=0;故选A.【点睛】本题主要考查方差,熟练掌握方差的计算方法是解题的关键.8、A【分析】由数轴可知a<0<b,根据绝对值的性质和二次根式的性质化简即可.【详解】解:由数轴可知,a<0<b,则a﹣b<0,则|a﹣b|﹣=-(a-b)-(-a)=﹣a+b+a=b.故选A.【点睛】本题考查的是绝对值和二次根式,熟练掌握绝对值的性质和二次根式的性质是解题的关键.9、A【分析】根据分式的分子分母都乘以或除以同一个数(或整式),结果不变,可得答案.【详解】解:把分式中的x和y都扩大5倍则原式故选A.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个数(或整式),结果不变.10、C【解析】根据平方根、立方根的运算及性质逐个判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误,故答案为:C.【点睛】本题考查了平方根、立方根的运算及性质,解题的关键是熟记运算性质.11、C【分析】根据题意,将分式换成10x,10y,再化简计算即可.【详解】解:若和都扩大10倍,则,故分式的值不变,故答案为:C.【点睛】本题考查了分式的基本性质,解题的关键是用10x,10y替换原分式中的x,y计算.12、A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.二、填空题(每题4分,共24分)13、15.【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.【详解】∵正方形ABCD,∴AD=CD,∠ADC=∠DAB=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°-60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°-∠ADE)=75°;∴∠EAB=90°-75°=15°.故答案为:15°【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.14、-1【分析】把(m,1)代入中,得到关于m的方程,解方程即可.【详解】解:把(m,1)代入中,得

,解得m=-1.

故答案为:-1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.15、80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.16、﹣1或2或1【分析】直接利用分式的值为零的条件得出分子为零进而计算得出答案.【详解】解:若=0,则x2﹣x﹣2=0或|x|﹣1=0且x+1≠0,解得:x=﹣1或2或1.故答案为:﹣1或2或1.【点睛】本题考查了求解分式方程,绝对值的性质应用,一元二次方程的解法,注意分式方程分母不为0的情况.17、1【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.【详解】解:数据3,4,1,7,的平均数为1,,解得:,;故答案为:1.【点睛】本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、a<b<c【分析】利用平方法把三个数值平方后再比较大小即可.【详解】解:∵a2=2000+2,b2=2000+2,c2=4004=2000+2×1002,1003×997=1000000-9=999991,1001×999=1000000-1=999999,10022=1.

∴a<b<c.故答案为:a<b<c.【点睛】这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.三、解答题(共78分)19、(1)(1,2);(2).【分析】(1)根据轴对称的性质找到各点的对应点,然后顺次连接即可,画出图形即可直接写出坐标.(2)根据轴对称的性质可以直接写出.【详解】(1)如图所示:直接通过图形得到(1,2)(2)由题意可得:由于与关于x=-1对称所以.【点睛】此题主要考查了轴对称作图的知识,注意掌握轴对称的性质,找准各点的对称点是关键.20、证明见解析.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【详解】连结AD在△BAD和△CDA中∴△BAD≌△CDA(SSS)∴∠B=∠C(全等三角形对应角相等).【点睛】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21、1【解析】试题分析:结合题意画出图形,再根据等腰三角形的性质和已知条件求出底边长和腰长,然后根据三边关系(两边之和大于第三边与两边之差小于第三边)进行讨论,即可得到结果.试题解析:如答图所示.设AD=DC=x,BC=y,由题意得或解得或当时,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系.当时,等腰三角形的三边为14,14,1,∴这个等腰三角形的底边长是1.考点:等腰三角形的边22、(1)无解.(2)x=【解析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解.(2)去分母得,2x=3-2(2x-2)解方程得,x=,经检验,x=是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23、(1)(2)【分析】(1)把n用m表示,再代入m≥n即可求解;(2)先表示为y关于m的函数,再根据一次函数的性质即可求解.【详解】(1)∵3m+n=1∴n=-3m+1∵m≥n∴m≥-3m+1解得(2)y=3m+4n=3m+4(-3m+1)=-9m+4∵-9<0,∴y随m的增大而减小,∴当m=时,y的最大值为-9×+4=【点睛】此题主要考查一次函数与不等式,解题的关键是熟知一次函数的性质及不等式的求解.24、(1)是该方程的解;(2)是该方程的解.【分析】(1)方程两边同时乘以(),化为整式方程后求解,然后进行检验即可得;(2)方程两边同时乘以,化为整式方程后求解,最后进行检验即可得.【详解】(1)方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论