2023届山东省烟台芝罘区六校联考八年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2023届山东省烟台芝罘区六校联考八年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2023届山东省烟台芝罘区六校联考八年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2023届山东省烟台芝罘区六校联考八年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2023届山东省烟台芝罘区六校联考八年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B. C. D.2.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于()A.4.7 B.5.0 C.5.4 D.5.83.已知A、B两地相距12km,甲、乙两人沿同一条公路分别从A、B两地出发相向而行,甲,乙两人离B地的路程s(km)与时间t(h)的函数关系图象如图所示,则两人在甲出发后相遇所需的时间是()A.1.2h B.1.5h C.1.6h D.1.8h4.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示.根据图象求得y与t的关系式为,这里的常数“-1.5”,“25”表示的实际意义分别是()A.“-1.5”表示每小时耗油1.5升,“25”表示到达乙地时油箱剩余油25升B.“-1.5”表示每小时耗油1.5升,“25”表示出发时油箱原有油25升C.“-1.5”表示每小时耗油1.5升,“25”表示每小时行驶25千米D.“-1.5”表示每小时行驶1.5千米,“25”表示甲乙两地的距离为25千米5.二元一次方程2x−y=1有无数多个解,下列四组值中是该方程的解是()A. B. C. D.6.在,,,,,,等五个数中,无理数有()A.个 B.个 C.个 D.个7.下列各式可以用完全平方公式分解因式的是()A. B. C. D.8.在中,,则的长为()A.2 B. C.4 D.4或9.在△ABC中,已知AB=4cm,BC=9cm,则AC的长可能是()A.5cm B.12cm C.13cm D.16cm10.已知,点在内部,点与点关于对称,点与点关于对称,则是()A.含30°角的直角三角形 B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形二、填空题(每小题3分,共24分)11.某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是____.12.数:的整数部分为_____.13.若分式的值为0,则y=_______14.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=_____.时,线段AP是∠CAB的平分线;(2)当t=_____时,△ACP是以AC为腰的等腰三角形.15.已知P(a,b),且ab<0,则点P在第_________象限.16.已知am=2,an=3,则am-n=_____.17.已知一个样本:98,99,100,101,1.那么这个样本的方差是_____.18.已知点A(m+3,2)与点B(1,n﹣1)关于y轴对称,则代数式(m+n)2017的值为.三、解答题(共66分)19.(10分)如图,直线y=-x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处.(1)求A、B两点的坐标;(2)求S△ABO·(3)求点O到直线AB的距离.(4)求直线AM的解析式.20.(6分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=CD;21.(6分)已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.(1)求B车的平均速度;(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.22.(8分)如图,AB=DE,AC=DF,BE=CF,求证:AB//DE,AC//DF.23.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图(1)中,画一个三角形,使它的三边长都是有理数;(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;(3)在图(3)中,画一个正方形,使它的面积是10.24.(8分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.25.(10分)如图,平分,交于点,,垂足为,过点作,交于点.求证:点是的中点.26.(10分)计算+++

参考答案一、选择题(每小题3分,共30分)1、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2、B【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.3、C【解析】先根据图象求出甲、乙两人的s与t的函数关系式,再联立求出交点坐标即可得出答案.【详解】设甲的s与t的函数关系式为由图象可知,点、在的图象上则,解得故甲的s与t的函数关系式为设乙的s与t的函数关系式为由图象可知,点、在的图象上则,解得故乙的s与t的函数关系式为联立,解得即两人在甲出发后相遇所需的时间为故选:C.【点睛】本题考查了一次函数的实际应用,依据图象求出甲、乙两人的s与t的函数关系式是解题关键.4、B【解析】试题分析:根据一次函数的实际应用可得:-1.5表示每小时耗油1.5升,25表示出发前油箱原有油25升.考点:一次函数的实际应用5、D【分析】将各项中x与y的值代入方程检验即可得到结果.【详解】A、把代入方程得:左边,右边=1,不相等,不合题意;

B、把代入方程得:左边,右边=1,不相等,不合题意;

C、把代入方程得:左边,右边=1,不相等,不合题意;

D、把代入方程得:左边,右边=1,相等,符合题意;

故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6、C【分析】根据无理数的三种形式:①开方开不尽的数;②无限不循环小数;③含有的数.【详解】解:是分数,属于有理数;=-3,开方可以开尽,属于有理数;0是整数,属于有理数;开方开不尽,属于无理数;含有,属于无理数;是无限不循环小数,属于无理数.所以有三个无理数.故选C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数;②无限不循环小数;③含有的数.7、D【分析】可以用完全平方公式分解因式的多项式必须是完全平方式,符合结构,对各选项分析判断后利用排除法求解.【详解】解:A、两平方项符号相反,不能用完全平方公式,故本选项错误;B、缺少乘积项,不能用完全平方公式,故本选项错误;C、乘积项不是这两数积的两倍,不能用完全平方公式,故本选项错误;D、,故本选项正确;故选:D.【点睛】本题考查了用完全公式进行因式分解的能力,解题的关键了解完全平方式的结构特点,准确记忆公式,会根据公式的结构判定多项式是否是完全平方式.8、D【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、B【分析】根据三角形的三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边,求出AC的取值范围,然后逐项判断即可.【详解】由三角形的三边关系定理得因此,只有B选项满足条件故选:B.【点睛】本题考查了三角形的三边关系定理,熟记定理是解题关键.10、C【解析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断.【详解】如图,

∵P,P1关于直线OA对称,P、P2关于直线OB对称,

∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,

∵∠AOB=30°,

∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=2∠AOB=60°,

∴△P1OP2是等边三角形.

故选C.【点睛】考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题.二、填空题(每小题3分,共24分)11、①,②,④.【解析】(1)把a=5代入不等式组,解不等式组的解集与选项解集对照即可解答;(2)把a=2代入不等式组,解不等式组,根据大大小小无解从而确定改选项正确;(3)根据不等式组无解,确定a的取值范围为a≤3;(4)根据不等式组只有两个整数解,可知这两个整数解为:x=3,x=4,所以x的取值范围是:3<x≤5.1.【详解】解:①a=5,则不等式组的解集为3<x≤5,所以①正确;②a=2,x的取值范围是x>3和x≤2,无解,所以②正确;③不等式组无解,则a的取值范围为a≤3,而不是a<3,所以③错误;④若a=5.1则,x的取值范围是:3<x≤5.1,整数解为:x=4,x=5,共有两个解.故答案为①,②,④.【点睛】本题考查一元一次不等式的解法、整数解及解集判定,解题关键是熟练掌握同大取大、同小取小、大小小大中间找、大大小小找不到.12、1【分析】先确定在3和4之间,然后的整数部分就能确定.【详解】根据<<可得出的整数部分为3,进而可得出的整数部分.解:∵<<,∴的整数部分为1.故答案为:1.【点睛】本题主要考查了无理数的比较大小,熟练掌握有理数与无理数的大小比较是解题的关键.13、-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式的值等于0,则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1.若分式的值等于0,则y=-1.

故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.14、s,3或s或6s【分析】(1)过P作PE⊥AB于E,根据角平分线的性质可得PE=CP=2t,AE=AC=6,进而求得BE、BP,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP、AC=AP情况进行讨论求解.【详解】(1)在△ABC中,∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,如图,过P作PE⊥AB于E,∵线段AP是∠CAB的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm,∴BP=(8-2t)cm,BE=10-6=4cm,在Rt△PEB中,由勾股定理得:,解得:t=,故答案为:s;(2)∵△ACP是以AC为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t==3s;当AC=CP=6时,如图2,过C作CM⊥AB于M,则AM=PM,CM=,∵AP=10+8-2t=18-2t,∴AM=AP=9-t,在Rt△AMC中,由勾股定理得:,解得:t=s或t=s,∵0﹤2t﹤8+10=18,∴0﹤t﹤9,∴t=s;当AC=AP=6时,如图3,PB=10-6=4,t==6s,故答案为:3s或s或6s.【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,15、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.16、【解析】逆向运用同底数幂除法法则进行计算.【详解】∵am=2,an=3,∴am-n=.故答案是:.【点睛】考查了运用同底数幂除法法则进行计算,解题关键是逆向运用同底数幂除法法则.17、2【分析】根据方差公式计算即可.方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【详解】解:这组样本的平均值为=(98+99+100+101+1)=100S2=[(98﹣100)2+(99﹣100)2+(100﹣100)2+(101﹣100)2+(1﹣100)2]=2故答案为2.【点睛】本题考查方差的定义.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,18、﹣1.【详解】解:∵点A(m+3,2)与点B(1,n﹣1)关于y轴对称,∴m+3=﹣1,n﹣1=2,解得:m=﹣4,n=3,∴(m+n)2017=﹣1.故答案为﹣1.【点睛】本题主要考查了关于y轴对称的点的坐标特征,若两个关于y轴对称,则这两点的横坐标互为相反数,纵坐标相等.三、解答题(共66分)19、(1)A(6,0),B(0,8);(2)24;(1)4.8;(4)y=-x+1.【分析】(1)由解析式令x=0,y=x+8=8,即B(0,8),令y=0时,x=6,即A(6,0);(2)根据三角形面积公式即可求得;(1)根据三角形面积求得即可;(4)由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐标,设直线AM的解析式为y=kx+b,再把A、M坐标代入就能求出解析式.【详解】解:(1)当x=0时,y=x+8=8,即B(0,8),当y=0时,x=6,即A(6,0);(2)∵点A的坐标为:(6,0),点B坐标为:(0,8),∠AOB=90°,∴OA=6,OB=8,∴,∴S△ABO=OA•OB=×6×8=24;(1)设点O到直线AB的距离为h,∵S△ABO=OA•OB=AB•h,∴×6×8=×10h,解得h=4.8,∴点O到直线AB的距离为4.8;(4)由折叠的性质,得:AB=AB′=10,∴OB′=AB′-OA=10-6=4,设MO=x,则MB=MB′=8-x,在Rt△OMB′中,OM2+OB′2=B′M2,即x2+42=(8-x)2,解得:x=1,∴M(0,1),设直线AM的解析式为y=kx+b,把(0,1);(6,0)代入可得,,解得,,所以,直线AM的解析式为y=-x+1.【点睛】此题考查了折叠的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、勾股定理等知识,解答本题的关键是求出OM的长度.20、详见解析.【分析】根据BE=CF推出BF=CE,然后利用“角角边”证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明.【详解】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(AAS),∴AB=DC(全等三角形对应边相等)21、(1)B车的平均速度为米/秒;(2)不能,理由见解析;(3)A车调整后的平均速度为米/秒【分析】(1)A车走完全程所用时间秒就是B车走了路程(30-12)米所花的时间,据此列出方程并解得即可;(2)比较A车走完全程(30+12)与B车走了路程所花的时间,即可得到答案;(3)由(2)的结论:B车到达终点所花时间为秒,即可求得A车调整后的平均速度.【详解】(1)设B车的平均速度为米/秒,依题意得:解得:∴B车的平均速度为米/秒;(2)不能,理由是:A车从起点退后12米,再到达终点所花时间为:秒;B车到达终点所花时间为:秒;∴A车比B车先到达终点;(3)由(2)的结论:B车到达终点所花时间为秒;∴A车调整后的平均速度应为:米/秒.【点睛】本题考查了一元一次方程的实际应用,理清速度、路程、时间三者之间的关系是解题的关键.22、见解析.【解析】先证明CB=FE,再加上条件AB=DE,AC=DF,可利用SSS判定△ABC≌△DEF,根据全等三角形的性质可得∠B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论