2023届陕西省咸阳百灵中学数学八年级第一学期期末监测模拟试题含解析_第1页
2023届陕西省咸阳百灵中学数学八年级第一学期期末监测模拟试题含解析_第2页
2023届陕西省咸阳百灵中学数学八年级第一学期期末监测模拟试题含解析_第3页
2023届陕西省咸阳百灵中学数学八年级第一学期期末监测模拟试题含解析_第4页
2023届陕西省咸阳百灵中学数学八年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.八年级学生去距学校s千米的博物馆参观,一部分同学骑自行车先走,过了1小时后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的m倍,设骑车同学的速度为x千米/小时,则可列方程()A.=+1 B.-=1 C.=+1 D.=12.在化简分式的过程中,开始出现错误的步骤是()A.B.C.D.3.一个正多边形,它的一个内角恰好是一个外角的倍,则这个正多边形的边数是()A.八 B.九 C.十 D.十二4.如图,在Rt△ABC中,∠ACB=90°,D是AB中点,AB=10,则CD的长为()A.5 B.6 C.8 D.105.若分式的值为0,则()A. B. C. D.6.下列说法正确的是()A.形如AB的式子叫分式 B.C.当x≠3时,分式xx-3无意义 D.分式2a2b与1ab7.若使分式有意义,则的取值范围是()A. B. C. D.8.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分 B.中位数是95分C.平均数是95分 D.方差是159.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.2810.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A. B. C. D.二、填空题(每小题3分,共24分)11.因式分解:3x2-6xy+3y2=______.12.已知a1,则a2+2a+2的值是_____.13.如果Rt△ABC是轴对称图形,且斜边AB的长是10cm,则Rt△ABC的面积是_____cm1.14.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.15.若,,,则的大小关系用“<”号排列为_________.16.已知关于x,y的二元一次方程组2x+3y=kx+2y=-1的解互为相反数,则k的值是_________17.在函数y=2x+1中,自变量18.若(m+1)0=1,则实数m应满足的条件_____.三、解答题(共66分)19.(10分)因式分解:(1);(2).20.(6分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.21.(6分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.22.(8分)如图,平分,交于点,,垂足为,过点作,交于点.求证:点是的中点.23.(8分)如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知,,求的值;②已知,,求的值.24.(8分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.25.(10分)甲、乙两名同学参加少年科技创新选拔赛,六次比赛的成绩如下:甲:879388938990乙:8590909689(1)甲同学成绩的中位数是__________;(2)若甲、乙的平均成绩相同,则__________;(3)已知乙的方差是,如果要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由.26.(10分)如图,在中,,在上取一点,在延长线上取一点,且.证明:.(1)根据图1及证法一,填写相应的理由;证法一:如图中,作于,交的延长线于.(),()(),,()()(2)利用图2探究证法二,并写出证明.

参考答案一、选择题(每小题3分,共30分)1、A【分析】设骑车同学的速度为x千米/小时,则汽车的速度为mx千米/小时,根据时间=路程÷速度结合骑车的同学比乘车的同学多用1小时,即可得出关于x的分式方程,此题得解.【详解】设骑车同学的速度为x千米/小时,则汽车的速度为mx千米/小时,根据题意得:=+1.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.2、B【分析】根据题意直接将四选项与正确的解题步骤比较,即可知错误的步骤.【详解】解:∵正确的解题步骤是:,∴开始出现错误的步骤是.故选:B.【点睛】本题主要考查分式的加减法,熟练掌握分式的加减法运算法则是解题的关键.3、C【分析】可设正多边形一个外角为x,则一个内角为4x,根据一个内角和一个外角互补列方程解答即可求出一个外角的度数,再根据多边形的外角和为360°解答即可.【详解】设正多边形一个外角为x,则一个内角为4x,根据题意得:x+4x=180°x=36°360°÷36°=10故这个正多边形为十边形.故选:C【点睛】本题考查的是正多边形的外角与内角,掌握正多边形的外角和为360°是关键.4、A【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【点睛】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.5、C【分析】根据分式的值为0的条件:分子=0且分母≠0,即可求出x.【详解】解:∵分式的值为0∴解得:故选C.【点睛】此题考查的是分式的值为0的条件,掌握分式的值为0的条件:分子=0且分母≠0是解决此题的关键.6、B【解析】根据分式的定义,分式有意义的条件以及最简公分母进行解答.【详解】A、形如AB且BB、整式和分式统称有理式,故本选项正确.C、当x≠3时,分式xx-3D、分式2a2b与1ab的最简公分母是故选:B.【点睛】考查了最简公分母,分式的定义以及分式有意义的条件.因为1不能做除数,所以分式的分母不能为1.7、B【解析】根据分式有意义的条件是分母不等于零求解.【详解】解:由题意得,,解得,,故选:B.【点睛】本题主要考查的是分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.8、A【解析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】A、90分的人数最多,众数是90分,正确;

B、中位数是90分,错误;

C、平均数是分,错误;D、分,错误;

故选:A.【点睛】本题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.9、B【分析】根据角平分线的性质得出DE=CD=2,根据三角形的面积公式求出即可.【详解】解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.【点睛】本题是对角平分线性质的考查,熟练掌握角平分线的性质是解决本题的关键.10、B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.二、填空题(每小题3分,共24分)11、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用12、1.【分析】先将多项式配方后再代入可解答.【详解】解:∵a1,∴a2+2a+2=(a+1)2+1=(1+1)2+1=11+1=1.故答案为:1.【点睛】本题考查了完全平方式和二次根式的化简,熟记完全平方公式对解题非常重要.13、15【分析】根据题意可得,△ABC是等腰直角三角形,根据斜边AB是10cm,求出直角边的长,最后根据三角形面积公式得出答案即可.【详解】解:∵Rt△ABC是轴对称图形,∴△ABC是等腰直角三角形,∵斜边AB的长是10cm,∴直角边长为(cm),∴Rt△ABC的面积=(cm1);故答案为:15.【点睛】本题主要考察了勾股定理以及轴对称图形的性质,根据题意得出△ABC是等腰直角三角形是解题的关键.14、2:2【详解】解:∵小正方形与大正方形的面积之比为1:12,∴设大正方形的面积是12,∴c2=12,∴a2+b2=c2=12,∵直角三角形的面积是=2,又∵直角三角形的面积是ab=2,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=12+2×6=12+12=21,∴a+b=1.则a、b是方程x2﹣1x+6=0的两个根,故b=2,a=2,∴.故答案是:2:2.考点:勾股定理证明的应用15、a<b<c【分析】利用平方法把三个数值平方后再比较大小即可.【详解】解:∵a2=2000+2,b2=2000+2,c2=4004=2000+2×1002,1003×997=1000000-9=999991,1001×999=1000000-1=999999,10022=1.

∴a<b<c.故答案为:a<b<c.【点睛】这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.16、-1【详解】∵关于x,y的二元一次方程组2x+3y=k①x+∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案为-117、x【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数可知,要使2x+118、m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.三、解答题(共66分)19、(1);(2)【分析】(1)提公因式后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1);(2).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、(1)22.5°;(2)见解析【分析】(1)首先根据等腰直角三角形求出的度数,然后利用等腰三角形的性质和三角形内角和求出的度数,最后余角的概念求值即可;(2)作AF⊥CD交CD于点F,首先根据等腰三角形三线合一得出CF=FD=CD,∠FAD=∠CAB=22.5°,进一步可证明△AFD≌△CEB,则有BE=DF,则结论可证.【详解】(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°-67.5°=22.5°;(2)证明:作AF⊥CD交CD于点F,∵AD=AC,∴CF=FD=CD,∠FAD=∠CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=90°-67.5°=22.5°,∴∠CBE=45°+22.5°=67.5°,在△AFD和△CEB中,∴△AFD≌△CEB,∴BE=DF,∴CD=2BE.【点睛】本题主要考查等腰三角形的性质,三角形内角和定理,全等三角形的判定及性质,掌握这些性质及定理是解题的关键.21、(1)详见解析;(2)(m,2﹣n);(3)详见解析.【分析】(1)分别作出△ABC的三个顶点关于直线l的对称点,再首尾顺次连接即可;(2)由题意得:两点的横坐标相等,对称点P1的纵坐标为1﹣(n﹣1),从而得出答案;(3)利用轴对称的性质求解可得.【详解】(1)如图所示,△A1B1C1即为所求;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.【点睛】本题主要考查直角坐标系中,图形的轴对称以及轴对称的性质,掌握轴对称的性质是解题的关键.22、详见解析【分析】根据角平分线的定义、平行线的性质得到FA=FE,根据垂直的定义、同角的余角相等得到FB=FE,证明结论.【详解】平分,,,,,,,,,,,,即点是的中点.【点睛】本题考查的是平行线的性质、等腰三角形的性质、线段的中点,掌握等腰三角形的性质定理是解题的关键.23、(1)正方形的面积可表示为:或;等式:;(2)①;②103.【分析】(1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;(2)①根据(1)中的等式进行直接求解即可;②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.【详解】(1)正方形ABCD的面积可表示为:或等式:(2)①∵,,由(1)得:∴∴②令a=x-y,则a+z=11,az=9∴原式可变形为:【点睛】本题考查的是完全平方公式的几何意义,能根据(1)中求出的等式对完全平方公式进行变形是关键.24、(1);(2)1.【解析】(1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;(2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.【详解】解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.(2)如图,连接BC,由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.所以.【点睛】本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.25、(1)89.5;(2)90;(3)甲,理由见解析.【分析】(1)将甲的成绩按照从大到小重新排列,中间两个数的平均数即是中位数;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论