下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形2.如图,直线,等腰的直角顶点在上,顶点在上,若,则()A.31° B.45° C.30° D.59°3.如图,二次函数的最大值为3,一元二次方程有实数根,则的取值范围是A.m≥3 B.m≥-3 C.m≤3 D.m≤-34.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1 B.1 C. D.5.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π6.下列四个几何体中,主视图与俯视图不同的几何体是()A. B.C. D.7.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值48.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.B.C.D.9.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A. B. C. D.10.如图,△ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线剪下△AMN,则剪下的三角形的周长为()A. B. C. D.随直线的变化而变化二、填空题(每小题3分,共24分)11.设分别为一元二次方程的两个实数根,则______.12.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.13.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.14.三角形的三条边分别为5,5,6,则该三角形的内切圆半径为__________15.如图、正比例函数与反比例函数的图象交于(1,2),则在第一象限内不等式的解集为_____________.16.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.17.计算:______.18.一块含有角的直角三角板按如图所示的方式放置,若顶点的坐标为,直角顶点的坐标为,则点的坐标为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.(1)求抛物线的函数表达式(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.20.(6分)一次函数分别与轴、轴交于点、.顶点为的抛物线经过点.(1)求抛物线的解析式;(2)点为第一象限抛物线上一动点.设点的横坐标为,的面积为.当为何值时,的值最大,并求的最大值;(3)在(2)的结论下,若点在轴上,为直角三角形,请直接写出点的坐标.21.(6分)如图,要建一个底面积为130平方米的鸡场,鸡场一边靠墙(墙长16米),并在与墙平行的一边开道1米宽的门,现有能围成32米长的木板.求鸡场的长和宽各是多少米?22.(8分)如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.23.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.24.(8分)如图1,在平面直角坐标系中,二次函数的图象与轴交于两点,点为抛物线的顶点,为线段中点.(1)求的值;(2)求证:;(3)以抛物线的顶点为圆心,为半径作,点是圆上一动点,点为的中点(如图2);①当面积最大时,求的长度;②若点为的中点,求点运动的路径长.
25.(10分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)点数2345…示意图…直线条数1…请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为______;(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?26.(10分)抛物线的对称轴为直线,该抛物线与轴的两个交点分别为和,与轴的交点为,其中.(1)写出点的坐标________;(2)若抛物线上存在一点,使得的面积是的面积的倍,求点的坐标;(3)点是线段上一点,过点作轴的垂线交抛物线于点,求线段长度的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.2、A【分析】过点B作BD//l1,,再由平行线的性质即可得出结论.【详解】解:过点B作BD//l1,则∠α=∠CBD.
∵,
∴BD//,
∴∠β=∠DBA,
∵∠CBD+∠DBA=45°,
∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.
故选A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.3、C【解析】方程ax2+bx+c-m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【详解】方程ax2+bx+c-m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,故选:C.【点睛】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.4、B【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【详解】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B.【点睛】此题考查了折叠的性质与相似三角形的判定与性质.题目难度不大,注意数形结合思想的应用.5、A【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.6、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.7、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).8、D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:.故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.9、A【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置,从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.10、B【分析】如图,设E、F、G分别为⊙O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案.【详解】设E、F、G分别为⊙O与BC、AC、MN的切点,∵⊙O是△ABC的内切圆,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN与⊙O相切于G,∴DM=MG,FN=GN,∵△ABC的周长为18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周长=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【点睛】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.二、填空题(每小题3分,共24分)11、1【分析】先根据m是的一个实数根得出,利用一元二次方程根与系数的关系得出,然后对原式进行变形后整体代入即可得出答案.【详解】∵m是一元二次方程的一个实数根,∴,即.由一元二次方程根与系数的关系得出,∴.故答案为:1.【点睛】本题主要考查一元二次方程的根及根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.12、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.13、2.【解析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【详解】圆锥的弧长,
圆锥的底面半径,
故答案为2.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.14、1.5【分析】由等腰三角形的性质和勾股定理,求出CE的长度,然后利用面积相等列出等式,即可求出内切圆的半径.【详解】解:如图,点O为△ABC的内心,设OD=OE=OF=r,∵AC=BC=5,CE平分∠ACB,∴CE⊥AB,AE=BE=,在Rt△ACE中,由勾股定理,得,由三角形的面积相等,则,∴,∴,∴;故答案为:1.5;【点睛】本题考查的是三角形的内切圆与内心,三线合一定理,勾股定理,掌握三角形的面积公式进行计算是解题的关键.15、x>1【分析】在第一象限内不等式k1x>的解集就是正比例函数图象都在反比例函数图象上方,即有y1>y2时x的取值范围.【详解】根据图象可得:第一象限内不等式k1x>
的解集为x>1.
故答案是:x>1.【点睛】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,解题关键在于掌握反比例函数与一次函数图象的交点坐标满足两函数解析式.16、m≤且m≠1.【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.17、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:.故答案为:【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.18、【分析】过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△CAO,设点B坐标为(x,y),根据相似三角形的性质即可求解.【详解】过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴,∴△BCD∽△CAO,∴,设点B坐标为(x,y),则,,∴=AC=2,∵有图知,,∴,解得:,则y=3.即点B的坐标为.故答案为【点睛】本题考查了坐标与图形性质、相似三角形的判定及性质、特殊角的三角函数值,解题的关键是要求出BC和AC的值和30度角的三角函数联系起来,作辅助线构造直角三角形为三角函数作铺垫.三、解答题(共66分)19、(1);(2);(3)【分析】(1)利用对称轴和A点坐标可得出,再设,代入C点坐标,求出a的值,即可得到抛物线解析式;(2)求C点和E点坐标可得出CE的长,再联立直线与抛物线解析式,得到,设点P,Q的横坐标分别为,利用根与系数的关系求出,再根据的面积可求出k的值,将k的值代入方程求出,即可得到P、Q的坐标;(3)先求直线AC解析式,再联立直线PQ与直线AC,求出交点G的坐标,设,,过G作MN∥y轴,过K作KN⊥MN于N,过K'作K'M⊥MN于M,然后证明△MGK'≌△NKG,推出MK'=NG,MG=NK,建立方程求出的坐标,再代入抛物线解析式求出m的值,即可得到K的坐标.【详解】解:(1)∵抛物线对称轴,点∴设抛物线的解析式为将点代入解析式得:,解得,∴抛物线的解析式为,即(2)当x=0时,∴C点坐标为(0,2),OC=2直线与y轴交于点E,当x=0时,∴点,OE=1∴联立和得:整理得:设点P,Q的横坐标分别为则是方程的两个根,∴∴∴的面积解得(舍)将k=3代入方程得:解得:∴∴(3)存在,设AC直线解析式为,代入A(4,0),C(0,2)得,解得,∴AC直线解析式为联立直线PQ与直线AC得,解得∴设,,如图,过G作MN∥y轴,过K作KN⊥MN于N,过K'作K'M⊥MN于M,∵∠KGK'=90°,∴∠MGK'+∠NGK=90°又∵∠NKG+∠NGK=90°∴∠MGK'=∠NKG在△MGK'和△NKG中,∵∠M=∠N=90°,∠MGK'=∠NKG,GK'=GK∴△MGK'≌△NKG(AAS)∴MK'=NG,MG=NK∴,解得即K'坐标为(,)代入得:解得:∴K的坐标为或【点睛】本题考查二次函数的综合问题,是中考常考的压轴题型,难度较大,需要熟练掌握待定系数法求函数解析式,二次函数与一元二次方程的关系,第(3)题构造全等三角形是解题的关键.20、(1);(2)当时,的值最大,最大值为;(3)、、或【分析】(1)设抛物线的解析式为,代入点的坐标即可求解;(2)连接,可得点,根据一次函数得出点、的坐标,然后利用三角形面积公式得出的表达式,利用二次函数的表达式即可求解;(3)①当为直角边时,过点和点做垂线交轴于点和点,过点的垂线交轴于点,得出,再利用等腰直角三角形和坐标即可求解;②当为斜边时,设的中点为,以为圆心为直径做圆于轴于点和点,过点作轴,先得出和的值,再求出的值即可求解.【详解】解:(1)一次函数与轴交于点,则的坐标为.抛物线的顶点为,设抛物线解析式为.抛物线经过点,..抛物线解析式为;(2)解法一:连接.点为第一象限抛物线上一动点.点的横坐标为,.一次函数与轴交于点.则,的坐标为,.,,..当时,的值最大,最大值为;解法二:作轴,交于点.的坐标为,.点为第一象限抛物线上一动点.点的横坐标为,,...当时,的值最大,最大值为;解法三:作轴,交于点.一次函数与轴交于点.则,点为第一象限抛物线上一动点.点的横坐标为,.把代入,解得,..当时,的值最大,最大值为;解法四:构造矩形.(或构造梯形)一次函数与轴交于点.则,的坐标为,.点为第一象限抛物线上一动点.点的横坐标为,设点的纵坐标为,,,,,,,..当时,的值最大,最大值为;(3)由(2)易得点的坐标为,①当为直角边时,过点和点做垂线交轴于点和点,过点的垂线交轴于点,如下图所示:由点和点的坐标可知:∴∴∴点的坐标为由题可知:∴∴点的坐标为;②当为斜边时,设的中点为,以为圆心为直径做圆于轴于点和点,过点作轴,如下图所示:由点和点的坐标可得点的坐标是∴,∴∴点的坐标为,点的坐标为根据圆周角定理即可知道∴点和点符合要求∴综上所述点的坐标为、、或.【点睛】本题主要考察了待定系数法求抛物线解析式、一次函数、动点问题等,利用数形结合思想是关键.21、鸡场的长和宽分别为13m,10m.【分析】设鸡场的垂直于墙的一边长为x,而与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,那么平行于墙的一边长为(32-2x+1),而鸡场的面积为130m2,由此即可列出方程,解方程就可以解决问题.【详解】解:设鸡场的垂直于墙的一边长为x,
依题意得(32-2x+1)x=130,
2x2-33x+130=0,
(x-10)(2x-13)=0,
∴x1=10或x2=6.5,
当x1=10时,32-2x+1=13<16;
当x2=6.5时,32-2x+1=20>16,不合题意舍去.
答:鸡场的长和宽分别为13m,10m.【点睛】本题考查一元二次方程的应用,解题关键是弄懂题意,找出题目中的等量关系,要注意判断所求的解是否符合题意,舍去不合题意的解.22、(1)见解析;(2)2【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.23、(1);(2)△BPC面积的最大值为;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与△ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E′(-2,9),作点F(2,9)关于x轴的对称点F′(3,-8),连接E′、F′分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解.【详解】解:(1)把,分别代入得:∴∴抛物线的表达式为:.(2)如图,过点P作PH⊥OB交BC于点H令x=0,得y=5∴C(0,5),而B(5,0)∴设直线BC的表达式为:∴∴∴设,则∴∴∴∴△BPC面积的最大值为.(3)如图,∵C(0,5),B(5,0)∴OC=OB,∴∠OBC=∠OCB=45°∴AB=6,BC=要使△BCD与△ABC相似则有或①当时∴则∴D(0,)②当时,CD=AB=6,∴D(0,1)即:D的坐标为(0,1)或(0,)(4)∵∵E为抛物线的顶点,∴E(2,9)如图,作点E关于y轴的对称点E'(﹣2,9),∵F(3,a)在抛物线上,∴F(3,8),∴作点F关于x轴的对称点F'(3,8),则直线E'F'与x轴、y轴的交点即为点M、N设直线E'F'的解析式为:则∴∴直线E'F'的解析式为:∴,0),N(0,).【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.24、(1),;(2)证明见解析;(3)①或;②.【分析】(1)将代入二次函数的解析式即可求解;(2)证得是等边三角形即可证得结论;(3)①根据题意,当或时,或面积最大,利用三角形中位线定理可求得的长,利用勾股定理可求得,即可求得答案;②根据点M的运动轨迹是半径为2的,则的中点的运动轨迹也是圆,同样,的中点的运动轨迹也是圆,据此即可求得答案.【详解】∵二次函数的图象与轴交于两点,∴,解得:,故答案为:,;(2)由(1)得:抛物线的解析式为,∵二次函数的图象与轴交于两点,∴抛物线的对称轴为:,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)GBT 38205.1-2025液压传动 16MPa系列单出杆缸的安装尺寸 第1部分:中型系列 (2026年)深度解析
- 深度解析(2026)《GBT 34670-2017技术转移服务规范》
- 深度解析(2026)《GBT 34235-2017涤纶浸胶帆布技术条件和评价方法》
- 2026年贺州市钟山县钟山中学招聘备考题库完整参考答案详解
- 2026年广东惠州综合高中(普通高中)招聘教师备考题库有答案详解
- 2026年重庆机床(集团)有限责任公司磐联传动科技分公司招聘备考题库及答案详解(新)
- 2026年重庆长江轴承股份有限公司招聘13人备考题库及参考答案详解
- 2026年泸州市龙马高中招聘教职工4名备考题库完整参考答案详解
- 2026年东莞滨海湾未来学校招聘科创实验室研究员备考题库及完整答案详解1套
- 2026年北京林业大学雄安校区规划建设指挥部招聘备考题库及参考答案详解1套
- 遗体火化师招聘考核试卷及答案
- 2025年大学消防指挥专业题库- 火灾现场搜救与救援
- 2024-2025学年山东省聊城市临清市七年级(上)期末数学试卷(含答案)
- 苏州大学《高等数学A 2》2023 - 2024学年期末试卷
- GB/T 10454-2025包装非危险货物用柔性中型散装容器
- 2025年政府采购评标专家库测评真题5套含答案
- 电解铝安全环保知识培训课件
- 线性代数期末考试试题及答案
- 蒸汽管道工程分部分项划分方案
- 2025广东广州市南沙区榄核镇招聘幼儿教师笔试备考试题及答案解析
- 江苏苏州2022-2024年中考满分作文46篇
评论
0/150
提交评论