电磁场课件精选_第1页
电磁场课件精选_第2页
电磁场课件精选_第3页
电磁场课件精选_第4页
电磁场课件精选_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

习题2-1-3平行板电容器板间距离为d,其中介质的电导率为两板接有电流为I的电流源,测得媒质的功率损耗为P.如果将板间距离扩大为2d,其间仍然充满电导率为的媒质,则此电容器的功率损耗是多少?图2-4平行板电容器的电场功率的一个计算例子

习题2-1-3平行板电容器板间距离为d,其中介质图2-41(4)两种有损电介质分界面上的边界条件

PJ2J12,

21,

11-3-1有恒定电流通过两种不同的导体媒质(介电常数和电导率分别是和)的分界面.问若要使两种电解质分界面处的电荷面密度为零,则应该满足何条件.(4)两种有损电介质分界面上的边界条件PJ2J12,2图2-9恒定电场中镜像法

(a)(b)(c)I,I”对比P43页公式思考:P902-5如果导电媒质不均匀,媒质中的电位是否满足方程?P912-12在电流密度不为零的地方,电荷体密度是否可以等于零?

图2-9恒定电场中镜像法(a)3例

球形电容器的内外半径分别是R1=5cm,R2=10cm,加有电压.电容器中有两层均匀介质,其分界面也是同心球面.半径,电解质的电导率分别是,求球面间的电流密度,场强和电位.

图2-10长直圆柱导体之间电导和电阻

例球形电容器的内外半径分别是R1=5cm,R2=104解法二原问题等价于下面边值问题

作为练习,对比解法一的结果解法二原问题等价于下面边值问题作为练习,对5

注意1:

下面几何体可以直接用电流强度I表示J:1)平行板;2)同心圆柱;3)同心球;注意2:它们与第一章相应几何体的场强公式对比.图2-11需要注意几种常见几何图形中电流密度表达图2-11需要注意几种常见几何图形中电流密度表62-4-2半径为a的长直圆柱导体放在无限大的导体平板上方,圆柱轴线距离平板的距离为h,空间充满导电率为的不良导体.若导体的电导率远远大于,求圆柱和平板间对应截面单位长度的电阻.

图2-14长直圆柱导体之间电导和电阻

从U出发,并确定电轴位置2-4-2半径为a的长直圆柱导体放在无限大的导体平板上方,7P882-5-1厚度为d的法拉第圆盘的外半径为,中心孔半径为.设圆盘的电导率为,试证明孔与圆盘外边缘的电阻为

解法一

假设电流为I.图2-15P882-5-1厚度为d的法拉第圆盘的外半径为,中8方向:四条线在P点产生的磁感应强度方向都是垂直纸面向里(如图所示).由例3-1,单个长度为2l的细导线在P点产生的磁感应强度为:课本习题3-1-1及解答课本习题3-1-1及解答92)方向:任意元电流在P点产生的磁感应强度的方向是垂直纸面向里,大小为,所以

3)方向:磁感应强度方向都是垂直纸面向里.P点磁场是两个半无限长的直线和一个半圆周共同产生,半圆周磁感应强度是整圆周的一半.2)方向:任意元电流在P点产生的磁感应强度的方104)类似于1),得5)是两个半无限的载流导线和一个半圆周,所以产生的磁感应强为:

习题3-1-3求两平行长的直线的单位长度的受力.产生的磁感应强度为:4)类似于1),得11补充例题:(使用安培环路定律求分区均匀的问题)同轴电缆的内导体半径为R1,外导体的半径为R2,外导体的半径可以忽略不计.内外导体之间对半填充两种不同的导磁媒质,求磁感应强度和磁场强度.

解:在两种媒质分解面两侧中,相同不同,且当时,

当时,

①补充例题:(使用安培环路定律求分区均匀的问题)①12利用两种媒质分界面上的衔接条件:联立①②,得②利用两种媒质分界面上的衔接条件:联立①②,得②13补充例题1两根无限长细直导线,相距为2a,导线通有相反的电流I,求空间任意一点的磁矢位.解:电流仅z方向,是平行平面矢量场(仿照例3-1).同理当时,

补充例题1两根无限长细直导线,相距为2a,导线14习题3-5-1题目请阅读书,如图所示.解:

在内有恒定电流,不能使用磁位函数,而在其他区域建立磁位函数如下:边界条件:四个条件可以确定四个系数,最后得

注:零磁位的选择比零电位宽松.习题3-5-1题目请阅读书,如图所示.15补充例题2有一个载电流I的无限长直导线,求图中A,P两点磁压.解:

注意到,

并且磁压计算中的积分与路径无关,因此选择如图所示便于计算的积分路径,得P109利用磁矢位可以计算通过任意曲面S磁通量:

磁场与静电场也有比拟关系如下:

补充例题2有一个载电流I的无限长直导线,求图中16补充例题1:矩形截面环形螺线管,共有N匝,设线圈中通有电流I,求穿过整个螺线管的磁链.分析:由于线圈是密绕的,所以磁场都集中在螺环内,又由于磁场的对称性,则磁感应线必然是以O点为中心的同心圆族.在环内任选一条半径为的B线作为积分路径,由安培定律得

补充例题1:矩形截面环形螺线管,共有N匝,设线17补充例题2:设有一根半径为a的无限长导体圆柱,如图所示.圆柱中通有电流I,求穿过圆柱内的沿轴向单位长度的磁链.解:圆柱内任一点磁感应强度为穿过宽度为,沿轴向长度为l=1

矩形面积元磁通是注意到所交链电流

补充例题2:设有一根半径为a的无限长导体圆柱,18注意:利用磁场能量可算自感系数

补充例题:半径为a的长直实心圆柱导体均匀分布的电流I,另有一个半径为b的长直薄导电圆柱,筒壁厚度趋于零,并且通有均匀分布的电流I,电流的流向均沿圆柱轴线方向,若要使两种情况下,单位长度储能相等,试求这两个圆柱体的半径之比.

注意:利用磁场能量可算自感系数19解:要计算能量,先要求出两个圆柱体内外的磁场分布.根据安培定律,,得实心导体:空心圆柱:

解:要计算能量,先要求出两个圆柱体内外的磁场分20习题2-1-3平行板电容器板间距离为d,其中介质的电导率为两板接有电流为I的电流源,测得媒质的功率损耗为P.如果将板间距离扩大为2d,其间仍然充满电导率为的媒质,则此电容器的功率损耗是多少?图2-4平行板电容器的电场功率的一个计算例子

习题2-1-3平行板电容器板间距离为d,其中介质图2-421(4)两种有损电介质分界面上的边界条件

PJ2J12,

21,

11-3-1有恒定电流通过两种不同的导体媒质(介电常数和电导率分别是和)的分界面.问若要使两种电解质分界面处的电荷面密度为零,则应该满足何条件.(4)两种有损电介质分界面上的边界条件PJ2J12,22图2-9恒定电场中镜像法

(a)(b)(c)I,I”对比P43页公式思考:P902-5如果导电媒质不均匀,媒质中的电位是否满足方程?P912-12在电流密度不为零的地方,电荷体密度是否可以等于零?

图2-9恒定电场中镜像法(a)23例

球形电容器的内外半径分别是R1=5cm,R2=10cm,加有电压.电容器中有两层均匀介质,其分界面也是同心球面.半径,电解质的电导率分别是,求球面间的电流密度,场强和电位.

图2-10长直圆柱导体之间电导和电阻

例球形电容器的内外半径分别是R1=5cm,R2=1024解法二原问题等价于下面边值问题

作为练习,对比解法一的结果解法二原问题等价于下面边值问题作为练习,对25

注意1:

下面几何体可以直接用电流强度I表示J:1)平行板;2)同心圆柱;3)同心球;注意2:它们与第一章相应几何体的场强公式对比.图2-11需要注意几种常见几何图形中电流密度表达图2-11需要注意几种常见几何图形中电流密度表262-4-2半径为a的长直圆柱导体放在无限大的导体平板上方,圆柱轴线距离平板的距离为h,空间充满导电率为的不良导体.若导体的电导率远远大于,求圆柱和平板间对应截面单位长度的电阻.

图2-14长直圆柱导体之间电导和电阻

从U出发,并确定电轴位置2-4-2半径为a的长直圆柱导体放在无限大的导体平板上方,27P882-5-1厚度为d的法拉第圆盘的外半径为,中心孔半径为.设圆盘的电导率为,试证明孔与圆盘外边缘的电阻为

解法一

假设电流为I.图2-15P882-5-1厚度为d的法拉第圆盘的外半径为,中28方向:四条线在P点产生的磁感应强度方向都是垂直纸面向里(如图所示).由例3-1,单个长度为2l的细导线在P点产生的磁感应强度为:课本习题3-1-1及解答课本习题3-1-1及解答292)方向:任意元电流在P点产生的磁感应强度的方向是垂直纸面向里,大小为,所以

3)方向:磁感应强度方向都是垂直纸面向里.P点磁场是两个半无限长的直线和一个半圆周共同产生,半圆周磁感应强度是整圆周的一半.2)方向:任意元电流在P点产生的磁感应强度的方304)类似于1),得5)是两个半无限的载流导线和一个半圆周,所以产生的磁感应强为:

习题3-1-3求两平行长的直线的单位长度的受力.产生的磁感应强度为:4)类似于1),得31补充例题:(使用安培环路定律求分区均匀的问题)同轴电缆的内导体半径为R1,外导体的半径为R2,外导体的半径可以忽略不计.内外导体之间对半填充两种不同的导磁媒质,求磁感应强度和磁场强度.

解:在两种媒质分解面两侧中,相同不同,且当时,

当时,

①补充例题:(使用安培环路定律求分区均匀的问题)①32利用两种媒质分界面上的衔接条件:联立①②,得②利用两种媒质分界面上的衔接条件:联立①②,得②33补充例题1两根无限长细直导线,相距为2a,导线通有相反的电流I,求空间任意一点的磁矢位.解:电流仅z方向,是平行平面矢量场(仿照例3-1).同理当时,

补充例题1两根无限长细直导线,相距为2a,导线34习题3-5-1题目请阅读书,如图所示.解:

在内有恒定电流,不能使用磁位函数,而在其他区域建立磁位函数如下:边界条件:四个条件可以确定四个系数,最后得

注:零磁位的选择比零电位宽松.习题3-5-1题目请阅读书,如图所示.35补充例题2有一个载电流I的无限长直导线,求图中A,P两点磁压.解:

注意到,

并且磁压计算中的积分与路径无关,因此选择如图所示便于计算的积分路径,得P109利用磁矢位可以计算通过任意曲面S磁通量:

磁场与静电场也有比拟关系如下:

补充例题2有一个载电流I的无限长直导线,求图中36

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论