版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列实数中,是无理数的是()A. B. C. D.2.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)3.要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠14.下列图形中,不是轴对称图形的是()A.角 B.等边三角形 C.平行四边形 D.圆5.计算的结果是()A.a2 B.-a2 C.a4 D.-a46.下列各组数中,不能构成直角三角形的是()A.a=1,b=,c= B.a=5,b=12,c=13 C.a=1,b=,c= D.a=1,b=1,c=27.若式子在实数范围内有意义,则x的取值范围是()A.x≥ B.x> C.x≥ D.x>8.下列命题是假命题的是A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等9.下列各式不能分解因式的是()A. B. C. D.10.如图所示分别平分和,则的度数为()A. B. C. D.11.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米 B.15米 C.10米 D.5米12.若是二次根式,则,应满足的条件是()A.,均为非负数 B.,同号C., D.二、填空题(每题4分,共24分)13.把点先向右平移2个单位,再向上平移3个单位,所得点的坐标为_____.14.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是____.15.计算:.16.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_____°.17.如图,有一块四边形草地,,.则该四边形草地的面积是___________.18.点A(,)在轴上,则点A的坐标为______.三、解答题(共78分)19.(8分)如图,,,(1)求证:;(2)连接,求证:.20.(8分)(1)计算题:(2)解方程组:21.(8分)如图,在10×10的正方形网格中,每个小正方形的边长为1.已知点A、B都在格点上(网格线的交点叫做格点),且它们的坐标分别是A(2,-4)、B(3,-1).(1)点关于轴的对称点的坐标是______;(2)若格点在第四象限,为等腰直角三角形,这样的格点有个______;(3)若点的坐标是(0,-2),将先沿轴向上平移4个单位长度后,再沿轴翻折得到,画出,并直接写出点点的坐标;(4)直接写出到(3)中的点B1距离为10的两个格点的坐标.22.(10分)如图甲,正方形和正方形共一顶点,且点在上.连接并延长交于点.(1)请猜想与的位置关系和数量关系,并说明理由;(2)若点不在上,其它条件不变,如图乙.与是否还有上述关系?试说明理由.23.(10分)如图,,,于点D,于点E,BE与CD相交于点O.(1)求证:;(2)求证;是等腰三角形;(3)试猜想直线OA与线段BC又怎样的位置关系,并说明理由.24.(10分)已知:点Q的坐标(2-2a,a+8).(1)若点Q到y轴的距离为2,求点Q的坐标.(2)若点Q到两坐标轴的距离相等,求点Q的坐标.25.(12分)先化简,再求值:其中x=.26.阅读下面材料:小明遇到这样一个问题:如图1,在中,平分,.求证:小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如图2,在上截取,使得,连接,可以得到全等三角形,进而解决问题方法二:如图3,延长到点,使得,连接,可以得到等腰三角形,进而解决问题(1)根据阅读材料,任选一种方法证明(2)根据自己的解题经验或参考小明的方法,解决下面的问题:如图4,四边形中,是上一点,,,,探究、、之间的数量关系,并证明
参考答案一、选择题(每题4分,共48分)1、D【分析】根据无理数是无限不循环小数,可得答案.【详解】A.是有理数,故A错误;B、是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选D.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2、C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3、A【解析】根据分式的性质,要使分式有意义,则分式的分母不等于0.【详解】根据题意可得要使分式有意义,则所以可得故选A.【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.4、C【解析】分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解:A、角是轴对称图形;B、等边三角形是轴对称图形;C、平行四边形只是中心对称图形,不是轴对称图形.D、圆既是轴对称图形,也是中心对称图形;故选C.5、D【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.6、D【解析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A、∵12+()2=()2,∴能构成直角三角形,不符合题意;B、∵52+122=132,,∴能构成直角三角形,不符合题意;C、∵12+32=()2,∴能构成直角三角形,不符合题意;D、∵12+12≠22,∴不能构成直角三角形,符合题意,故选D.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.7、A【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.【详解】解:由题意得,,故选A.【点睛】本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.8、B【解析】根据平行线的判定,绝对值和全等三角形的性质判断即可.【详解】A.同旁内角互补,两直线平行,是真命题;B.若两个数的绝对值相等,则这两个数相等或互为相反数,是假命题;C.平行于同一条直线的两条直线也互相平行,是真命题;D.全等三角形的周长相等,是真命题.故选B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9、C【解析】选项A.=2x(x-2).选项B.=(x+)2.选项C.,不能分.选项D.=(1-m)(1+m).故选C.10、C【分析】首先根据三角形的内角和求出∠BAC、∠BCA的度数和,然后根据三角形的角平分线的定义,用∠BAC、∠BCA的度数和除以2,求出∠OAC,∠OCA的度数和,最后根据三角形的内角和可求出∠AOC的度数.【详解】解:∵∠B=100°,
∴∠BAC+∠BCA=180°-∠B=180°-100°=80°,
又∵AO平分∠BAC,CO平分∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=40°,
∴∠AOC=180°-(∠OAC+∠OCA)=180°-40°=140°.故答案为:C.【点睛】此题主要考查了三角形内角和定理,以及三角形角平分线的定义,解答此题的关键是求出∠OAC,∠OCA的度数和.11、D【解析】∵5<AB<25,∴A、B间的距离不可能是5,故选D.12、D【分析】根据二次根式有意义的条件解答即可.【详解】解:∵是二次根式,∴,故选D.【点睛】本题考查了二次根式的定义,熟练掌握二次根式成立的条件是解答本题的关键,形如的式子叫二次根式.二、填空题(每题4分,共24分)13、【分析】根据坐标的平移特点即可求解.【详解】点先向右平移2个单位,再向上平移3个单位,所得点的坐标为故答案为:.【点睛】此题主要考查坐标的平移,解题的关键是熟知坐标的平移特点.14、1<m<1【详解】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<1,故答案为1<m<1.考点:全等三角形的判定与性质;三角形三边关系.15、1【解析】试题分析:先化为同分母通分,再约分:.16、35【解析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,求出∠CAB=∠EAD,待入求出即可.
解:∵△ABC≌△ADE,
∴∠CAB=∠EAD,
∵∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,
∴∠BAD=∠EAC,
∴∠BAD=∠EAC=35°.
故答案为:35.17、【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.【详解】连结AC,在△ABC中,∵∠B=90°,AB=4m,BC=3m,∴AC==5(m),S△ABC=×3×4=6(m2),在△ACD中,∵AD=13m,AC=5m,CD=12m,∴AD2=AC2+CD2,∴△ACD是直角三角形,∴S△ACD=×5×12=30(m2).∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36(m2)故答案为:.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.18、(0,-1)【解析】已知点A(3a-1,1-6a)在y轴上,可得3a-1=0,解得,所以3a-1=0,1-6a=-1,即A的坐标为(0,-1).三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【分析】(1)由,则∠AED=∠BEC,即可证明△ADE≌△BCE,即可得到AD=BC;(2)连接DC,由(1)得,,则,再根据,即可得到答案.【详解】(1)证明:∵∴在和中,∵∴≌(),∴;(2)如图,连接,由≌,得,∵,∴,∵,∴.【点睛】本题考查了全等三角形的判定与性质,以及等腰三角形性质,正确找出三角形全等的条件是解题的关键.20、(1)9;(2).【分析】(1)原式第一项利用分母有理化化简,第二项利用立方根化简,第三项用乘法分配律计算后去括号,最后再作加减法即可;(2)将去分母化简后,与②进行加减消元法即可求解.【详解】解:(1)原式===9;(2)①去分母化简得:2x-3y=8③,②-③可得:2y=-2,解得:y=-1,代入②,解得x=,∴方程组的解为.【点睛】本题考查了二次根式的混合运算和解二元一次方程组,解题的关键是掌握二次根式的运算法则和选择合适的方法解二元一次方程组.21、(1)(3,1);(2)4;(3)画图见解析,B1(-3,3);(4)(3,-5)或(5,-3).【分析】(1)根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案;
(2)根据题意分别确定以AB的直角边可得两个点,再以AB为斜边可得两个点,共4个点;
(3)根据题意确定出A、B、C三点的对应点,再连接可得△A1B1C1,进而可得点B1的坐标;
(4)利用勾股定理可得与点B1距离为10的两个点的坐标,答案不唯一.【详解】(1)B
(3,-1)关于x轴的对称点的坐标是(3,1),
故答案为:(3,1);
(2)△ABC为等腰直角三角形,格点C在第四象限,AB为直角边,B为直角顶点时,C点坐标为(6,-2),AB为直角边,A为直角顶点时,C点坐标为(5,-5),AB为斜边时,C点坐标为(1,-2),(4,-3),则C点坐标为(6,-2),(5,-5),(1,-2),(4,-3),共4个,
故答案为:4;
(3)如图所示,即为所求,B1(-3,3);
(4)∵,∴符合题意的点可以为:(3,-5),(5,-3).【点睛】本题主要考查了轴对称变换以及平移变换、等腰三角形的性质、勾股定理的应用,正确得出对应点位置是解题关键.22、(1)BG=DE,BG⊥DE,理由见解析;(2)BG和DE还有上述关系:BG=DE,BG⊥DE,理由见解析【分析】(1)由四边形ABCD,CEFG都是正方形,得到CB=CD,CG=CE,∠BCG=∠DCE=90°,于是Rt△BCG≌Rt△DCE,得到BG=DE,∠CBG=∠CDE,根据三角形内角和定理可得到∠DHG=∠GCB=90°,即BG⊥DE.
(2)BG和DE还有上述关系.证明的方法与(1)一样.【详解】(1)BG=DE,BG⊥DE.理由:∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,而∠BGC=∠DGH,∴∠DHG=∠GCB=90°,即BG⊥DE.∴BG=DE,BG⊥DE;(2)BG和DE还有上述关系:BG=DE,BG⊥DE.∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCD=∠GCE=90°∵∠BCG=∠BCD+∠DCG,∠DCE=∠GCE+∠DCG∴∠BCG=∠DCE∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,又∵∠BKC=∠DKH,∴∠DHK=∠DCB=90°即BG⊥DE.∴BG=DE,BG⊥DE.【点睛】本题主要考查正方形的性质,全等三角形的性质和判定,利用全等三角形的性质证得∠CBG=∠CDE,∠CBG=∠CDE是解题的关键.23、(1)见解析;(2)见解析;(3)猜想:OA⊥BC.理由见解析;【分析】(1)根据垂直的定义可得∠ADC=∠AEB=90°,然后利用AAS即可证出结论;(2)根据全等三角形的性质可得∠ABE=∠ACD,然后根据等边对等角可得∠ABC=∠ACB,从而证出∠EBC=∠DCB,然后根据等角对等边即可证出结论;(3)利用HL证出RtADO≌RtAEO,从而得出∠DAO=∠EAO,然后根据三线合一即可求出结论.【详解】(1)证明:∵CD⊥AB,BE⊥AC∴∠ADC=∠AEB=90°∵∠DAC=∠EAB,AB=AC∴(AAS);(2)证明:∵∴∠ABE=∠ACD∵AB=AC∴∠ABC=∠ACB∴∠EBC=∠DCB∴OBC是等腰三角形;(3)解:猜想:OA⊥BC.理由如下:∵ACD≌ABE∴AD=AE∵∠ADC=∠AEB=90°,OA=OA∴RtADO≌RtAEO(HL)∴∠DAO=∠EAO又∵AB=AC∴OA⊥BC.【点睛】此题考查的是全等三角形的判定及性质和等腰三角形的判定及性质,掌握全等三角形的判定及性质和等腰三角形的判定及性质是解决此题的关键.24、(1)(-2,10)或(2,8);(2)(6,6)或(-18,18).【分析】(1)根据点Q到y轴的距离为2确定出点Q的横坐标为±2,然后分两种情况分别求解即可得;(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【详解】(1)∵点Q到y轴的距离为2,
∴点Q的横坐标是±2,即2-2a=±2,①当2-2a=-2时,解得a=2,∴2-2a=-2,a+8=10,点Q的坐标为(-2,10);②当2-2a=2时,解得a=0,∴2-2a=2,a+8=8,点Q的坐标为(2,8),所以,点Q的坐标为(-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网医疗的法律规制与创新发展平衡
- 互联网+糖尿病患者胰岛素剂量调整教育
- 临终医疗决策中的患者代理人授权
- 临床路径标准化与医疗服务效率提升
- 临床路径在提升病种医疗服务水平中的应用
- 临床科室绩效考核指标体系设计
- 临床模拟设备在检验科培训中的应用
- 临床技能的微创技术国际培训
- 临床技能培训质量的多维度评估模型
- 临床技能培训的师资质控指标研究
- 湖南佩佩教育战略合作学校2026届高三1月第二次联考语文试题
- 江苏省盐城市五校联考2025-2026学年高二上学期10月第一次联考试题语文试卷含答案
- 电气控制及PLC应用-项目化教程 课件 2.1 项目二 认识三菱系列PLC
- 公安民警心理健康和心理调适
- 2025年师德知识竞赛试题及参考答案
- 2025贵州遵义市仁怀市公共交通服务有限公司招聘公交驾驶员及管理人员招聘141人备考笔试试题及答案解析
- 864《商务英语4》开放大学期末考试机考题库(按拼音)
- 2025智慧园区建设运营模式创新与经济效益分析
- 锅炉工模拟考试题库(含标准答案)
- 影视产业国际化发展路径-洞察及研究
- 文化创意学概论考试题及答案
评论
0/150
提交评论