江苏省扬州市广陵区树人学校2022-2023学年数学八年级第一学期期末统考试题含解析_第1页
江苏省扬州市广陵区树人学校2022-2023学年数学八年级第一学期期末统考试题含解析_第2页
江苏省扬州市广陵区树人学校2022-2023学年数学八年级第一学期期末统考试题含解析_第3页
江苏省扬州市广陵区树人学校2022-2023学年数学八年级第一学期期末统考试题含解析_第4页
江苏省扬州市广陵区树人学校2022-2023学年数学八年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在实数0,,-2,中,其中最小的实数是()A. B. C. D.2.如图所示,四边形是边长为的正方形,,则数轴上点所表示的数是()A. B. C. D.3.下列长度的三条线段可以组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,104.若一个正数的平方根为2a+1和2-a,则a的值是()A. B.或-3 C.-3 D.35.下列各数中,不是无理数的是()A.B.C.0.25D.0.1010010001…(相邻两个1之间0的个数逐次加1)6.已知一个等腰三角形的两边长a、b满足方程组则此等腰三角形的周长为()A.5 B.4 C.3 D.5或47.据广东省旅游局统计显示,年月全省旅游住宿设施接待过夜旅客约人,将用科学计数法表示为()A. B. C. D.8.下列交通标识图中,是轴对称图形的是()A. B. C. D.9.某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A. B.C. D.10.下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.11.下列各组中的三条线段(单位:),能围成三角形的是()A.1,2,3 B.2,3,4 C.10,20,35 D.4,4,912.已知三角形的三边长为,如果,则是()A.等边三角形 B.等腰直角三角形 C.等腰三角形 D.直角三角形二、填空题(每题4分,共24分)13.如图,四边形中,,,则的面积为__________.14.如图,在中,,以点为圆心,为半径画弧,交线段于点;以点为圆心,长为半径画弧,交线段于点.设,,若,则__________(用含的式子表示).15.计算=____________.16.因式分解:________;________.17.分解因式:(1)3a2-6a+3=________;(2)x2+7x+10=_______.18.已知:如图,∠1=∠2=∠3=50°则∠4的度数是__.三、解答题(共78分)19.(8分)如图,在等腰直角三角形中,,,.将等腰直角形沿高剪开后,拼成图2所示的正方形.(1)如图1,等腰直角三角形的面积是______________.(2)如图2,求正方形的边长是多少?(3)把正方形放到数轴上(如图3),使得边落到数轴上,其中一个端点所对应的数为-1,直接写出另一个端点所对应的数.20.(8分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.21.(8分)小江利用计算器计算15×15,1×1,…,95×95,有如下发现:15×15=21=1×2×100+1,1×1=61=2×3×100+135×35=121=3×4×100+1,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+1.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.22.(10分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88________乙________81.1丙6________3(1)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.23.(10分)如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.24.(10分)某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?25.(12分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.26.某校为了培养学生学习数学的兴趣,举办“我爱数学”比赛,现有甲、乙、丙三个小组进入决赛.评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:比赛项目比赛成绩/分甲乙丙研究报告908379小组展示857982答辩748491(1)如果根据三个方面的平均成绩确定名次,那么哪个小组获得此次比赛的冠军?(2)如果将研究报告、小组展示、答辩三项得分按4:3:3的比例确定各小组的成绩,此时哪个小组获得此次比赛的冠军?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小,把这四个数从小到大排列,即可得出答案.【详解】∵实数0,,-2,中,,∴其中最小的实数为-2;

故选:A.【点睛】此题考查了实数的大小比较,用到的知识点是正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.2、D【分析】连接AC,根据勾股定理求出其长度,,再减1求相反数即为点P表示的数.【详解】解:如图,连接AC,在中,,所以,所以,所以点表示的数为.故选:D.【点睛】本题主要考查在数轴上用勾股定理求无理数长度的线段,熟练掌握该方法是解答关键.3、D【分析】根据三角形任意两边之和大于第三边逐一判断即可.【详解】A.3+4=7<8,故不能组成三角形,不符合题意,B.5+6=11,故不能组成三角形,不符合题意,C.1+2=3,故不能组成三角形,不符合题意,D.5+6=11>10,故能组成三角形,符合题意,故选:D.【点睛】本题考查了能够组成三角形三边的条件,三角形任意两边之和大于第三边,任意两边之差小于第三边;用两条较短的线段相加,如果大于最长那条就能够组成三角形.熟练掌握三角形的三边关系是解题关键.4、C【分析】根据一个正数的平方根有2个,且互为相反数列出方程,求出方程的解即可得到a的值.【详解】∵一个正数的平方根为2a+1和2-a∴2a+1+2-a=0解得a=-3故选:C【点睛】本题考查了平方根的性质,正数有两个平方根,它们互为相反数.5、C【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【详解】解:A、是无理数,故本选项不符合题意;B、是无理数,故本选项不符合题意;C、是有理数,故本选项符合题意;D、是无理数,故本选项不符合题意;故选:C.【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键.6、A【解析】试题分析:解方程组得:所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以这个等腰三角形的周长为2.故选A.考点:1.等腰三角形的性质;2.解二元一次方程组.7、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、A【解析】根据轴对称图形的概念对各个选项进行判断即可.【详解】解:A中的图案是轴对称图形,B、C、D中的图案不是轴对称图形,

故选:A.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.9、A【分析】根据题意可知第二次买了(x+20)本素描本,然后根据“第二次购买比第一次购买每本优惠4元”列出分式方程即可.【详解】解:由题意可知:故选A.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.10、D【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.11、B【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【详解】A选项:1+2=3,所以不能构成三角形;B选项:2+3>4,所以能构成三角形;C选项:10+20<35,所以不能构成三角形;D选项:4+4<9,所以不能构成三角形;故选:B.【点睛】考查了三角形的三边关系.解题关键利用了三角形的三边关系:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.12、C【分析】根据非负数之和等于0,则每一个非负数都为0,求出a,b,c的值,即可判断三角形的形状.【详解】∵,,且∴,解得∴,又,∴△ABC不是直角三角形,∴△ABC为等腰三角形故选C.【点睛】本题考查了非负数的性质与等腰三角形的判定,熟练掌握二次根式与绝对值的非负性是解题的关键.二、填空题(每题4分,共24分)13、10【分析】过点D作DE⊥AB与点E,根据角平分线的性质可得CD=DE,再用三角形面积公式求解.【详解】解:如图,过点D作DE⊥AB与点E,∵,∴BD平分∠ABC,∵∠BCD=90°,∴CD=DE=5,∵AB=4,∴△ABD的面积=×AB×DE=×4×5=10.故答案为:10.【点睛】本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.14、【分析】根据作图,结合线段的和差关系利用勾股定理求解即可.【详解】根据作图得,BC=BD=a,AD=AE,当AD=EC时,即AE=EC,∴E点为AC边的中点,∵AC=b,∴AD=,在Rt△ABC中,AC=b,BC=a,AB=,∴解得,a=.故答案为:.【点睛】此题考查了运用勾股定理求解直角三角形,熟练掌握勾股定理是解题的关键.15、2【解析】根据负指数幂的意义可知:(“倒底数,反指数”).故应填:2.16、【分析】原式提取,再利用平方差公式分解即可;首先提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:故答案为:;.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.17、3(a-1)2(x+2)(x+5)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;

(2)原式利用十字相乘法分解即可.【详解】解:(1)3a2-6a+3=3(a2-2a+1)=3(a-1)2(2)x2+7x+10=(x+2)(x+5)故答案为:3(a-1)2;(x+2)(x+5)【点睛】此题考查了提公因式法,公式法及十字相乘法分解因式,熟练掌握因式分解的方法是解本题的关键.18、130°【分析】:根据平行线的判定得出这两条直线平行,根据平行线的性质求出∠4=180°-∠3,求出∠4即可.【详解】解:由题意可知,∠1的对顶角为50°=∠3∴两直线平行,所以∠3的同位角与∠4是邻补角,∴∠4=180°-∠3=130°故答案为:130°【点睛】本题考查平行线的判定和性质,难度不大.三、解答题(共78分)19、(1)8;(2)(3)-1+或-1-【分析】(1)根据面积公式进行计算;(2)根据所拼图形,可知正方形的边长为△ABC的高,从而计算可得;(3)根据(2)中所求边长,当点E在-1,和点F在-1处分别得出另一个点对应的数.【详解】解:(1)==8;(2)由题意可知,拼成正方形EFGH后,△ABC的高CD变成了正方形的边长,∵CD===,∴正方形EFGH的边长为;(3)当点E在-1处时,F所对应的数为:-1+,当点F在-1处时,F所对应的数为:-1-,∴另一个端点所对应的的数为-1+或-1-.【点睛】本题考查了等腰直角三角形的性质,数轴上的点表示数,实数的加减运算,关键是数形结合,了解拼图的过程,并且注意在数轴上分类讨论.20、(1)A(﹣4,0),B(0,3);(2)P(4,);(3)满足条件的点Q(12,12)或(,4).【分析】令x=0,y=0即可求出A,B坐标.因为点C是点A关于y轴对称的点,求得C坐标,因为CD⊥x轴,所以求得D坐标,由折叠知,AC'=AC,所以C'D=AD﹣AC',设PC=a,在Rt△DC'P中通过勾股定理求得a值,即可求得P点坐标.在S△CPQ=2S△DPQ情况下分类讨论P点坐标即可求解.【详解】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a,∴PC'=a,DP=6﹣a,在Rt△DC'P中,a2+4=(6﹣a)2,∴a=,∴P(4,);(3)设P(4,m),∴CP=m,DP=|m﹣6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m﹣6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),∵直线AB的解析式为y=x+3①,当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,联立①③解得,x=,y=4,∴Q(,4),即:满足条件的点Q(12,12)或(,4).【点睛】本题主要考查了一元一次方程,二元一次方程,对称,折叠的综合应用,灵活运用是关键.21、见解析【分析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【详解】解:左边右边,.【点睛】本题主要考查了完全平方公式的运用,解题的关键是掌握完全平方公式和因式分解的能力.22、(1)8;6;1;(1)甲【分析】(1)根据平均数和中位数的定义及方差公式分别进行解答即可;

(1)根据方差的意义即方差越小越稳定即可得出答案.【详解】(1)把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是(1)∵,∴甲运动员的成绩最稳定.【点睛】本题考查了方差、平均数、中位数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23、(1)证明见解析;(1)2;(3)CD1+CE1=BC1,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.

(1)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.

(3)方法1、同(1)的方法即可得出结论;方法1、先判断出CD1+CE1=1(AP1+CP1),再判断出CD1+CE1=1AC1.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(1)如图1,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===2.(3)CD1、CE1、BC1之间的数量关系为:CD1+CE1=BC1,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=42°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=42°,∴∠BEC=∠BEA+∠AED=42°+42°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC1=BE1+CE1.∴BC1=CD1+CE1.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD1=(CP+PD)1=(CP+AP)1=CP1+1CP•AP+AP1,CE1=(EP﹣CP)1=(AP﹣CP)1=AP1﹣1AP•CP+CP1,∴CD1+CE1=1AP1+1CP1=1(AP1+CP1),∵在Rt△APC中,由勾股定理可知:AC1=AP1+CP1,∴CD1+CE1=1AC1.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB1+AC1=BC1,即1AC1=BC1,∴CD1+CE1=BC1.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(1)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.24、(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论