2023届吉林省前郭县数学九上期末预测试题含解析_第1页
2023届吉林省前郭县数学九上期末预测试题含解析_第2页
2023届吉林省前郭县数学九上期末预测试题含解析_第3页
2023届吉林省前郭县数学九上期末预测试题含解析_第4页
2023届吉林省前郭县数学九上期末预测试题含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°2.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形3.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长4.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小5.如图,矩形ABCD中,连接AC,延长BC至点E,使,连接DE,若,则∠E的度数是()A.65° B.60° C.50° D.40°6.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.247.已知二次函数y=,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y18.已知点P在半径为5cm的圆内,则点P到圆心的距离可以是A.4cm B.5cm C.6cm D.7cm9.已知点都在反比例函数的图象上,则下列关系式一定正确的是()A. B.C. D.10.设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为_____.12.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.13.已知MAX(a,b)=a,其中a>b如果MAX(,0)=0,那么x的取值范围为__________14.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.15.已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米,该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式)为________.16.关于的方程没有实数根,则的取值范围为____________17.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是18.______.三、解答题(共66分)19.(10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?20.(6分)已知方程是关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个根之和等于两根之积,求的值.21.(6分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.22.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.(1)求点C1在旋转过程中所经过的路径长.23.(8分)元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系中,⊙经过坐标原点,并与两坐标轴分别交于、两点,点的坐标为,点在⊙上,且,求⊙的半径.图1图2元元的做法如下,请你帮忙补全解题过程.解:如图2,连接,是⊙的直径.(依据是)且(依据是).即⊙的半径为.24.(8分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,结果精确到0.1海里)25.(10分)如图,在矩形ABCD中,AB=6,AD=3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DP=t,EQ=2t.(1)当点P在线段DE上(不包括端点)时.①求证:AP=PQ;②当AP平分∠DPB时,求△PBQ的面积.(2)在点P,Q的运动过程中,是否存在这样的t,使得△PBQ为等腰三角形?若存在,请求出t的值;若不存在,试说明理由.26.(10分)如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于两点,过点作轴于点,,,点的坐标为.(1)求一次函数和反比例函数的表达式;(2)求的面积;(3)是轴上一点,且是等腰三角形,请直接写出所有符合条件的点坐标.

参考答案一、选择题(每小题3分,共30分)1、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.2、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.3、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.4、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;

B选项:反比例函数的图象关于原点中心对称,故本选项错误;

C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;

D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.

故选B.5、A【分析】连接BD,与AC相交于点O,则BD=AC=BE,得△BDE是等腰三角形,由OB=OC,得∠OBC=50°,即可求出∠E的度数.【详解】解:如图,连接BD,与AC相交于点O,∴BD=AC=BE,OB=OC,∴△BDE是等腰三角形,∠OBC=∠OCB,∵,∠ABC=90°,∴∠OBC=,∴;故选择:A.【点睛】本题考查了矩形的性质,等腰三角形的判定和性质,三角形内角和定理,以及直角三角形两个锐角互余,解题的关键是正确作出辅助线,构造等腰三角形进行解题.6、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【点睛】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.7、A【分析】对于开口向下的二次函数,在对称轴的右侧为减函数.【详解】解:∵二次函数y=∴对称轴是x=−,函数开口向下,

而对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,

∵-1<x1<x2<x1,

∴y1,y2,y1的大小关系是y1>y2>y1.

故选:A.考点:二次函数的性质8、A【分析】直接根据点与圆的位置关系进行判断.【详解】点P在半径为5cm的圆内,点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选A.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.9、C【分析】根据反比例函数的性质即可得到答案.【详解】∵k=3>0,反比例函数的图形在第一象限或第三象限,∴在每个象限内,y随着x的增大而减小,∵点,且3<6,∴,故选:C.【点睛】此题考查反比例函数的性质,正确掌握函数图象的增减性是解题的关键.10、C【分析】根据根与系数的关系可得a+b=2,根据一元二次方程的解的定义可得a2=2a+1,然后把a2+a+3b变形为3(a+b)+1,代入求值即可.【详解】由题意知,a+b=2,a2-2a-1=0,即a2=2a+1,则a2+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选C.【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.二、填空题(每小题3分,共24分)11、或【分析】由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再证出FN=EN=3,即可得出结果;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:或.【点睛】本题考查了翻折变换的性质、平行四边形的性质、直角三角形的性质、线段垂直平分线的性质、等腰三角形的性质等知识;掌握翻折变换的性质和等腰三角形的性质是解答本题的关键.12、1【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.13、0﹤x﹤1【分析】由题意根据定义得出x2-x<0,通过作出函数y=x2-x的图象,根据图象即可求得x的取值范围.【详解】解:由题意可知x2-x<0,画出函数y=x2-x的图象如图:由图象可知x2-x<0的取值范围为0<x<1.故答案为:0<x<1.【点睛】本题主要考查二次函数的性质,解题的关键是理解新定义并根据新定义列出关于x的不等式运用数形结合思维分析.14、【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)==.15、【分析】根据油箱的总量固定不变,利用每千米耗油0.1升乘以700千米即可得到油箱的总量,故可求解.【详解】依题意得油箱的总量为:每千米耗油0.1升乘以700千米=70升∴轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式)为故答案为:.【点睛】此题主要考查列函数关系式,解题的关键是根据题意找到等量关系列出关系式.16、【分析】根据题意利用根的判别式进行分析计算,即可求出的取值范围.【详解】解:∵关于的方程没有实数根,∴,解得.故答案为:.【点睛】本题考查根的判别式相关,熟练掌握一元二次方程中,当时,方程没有实数根是解答此题的关键.17、.【解析】试题分析:能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是.故答案为.考点:1.勾股定理的逆定理;2.概率公式.18、【分析】将特殊角的三角函数值代入求解.【详解】解:,故答案为:.【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键.三、解答题(共66分)19、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)根据图象可得:当,,当,;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;∴,解得:,∴与之间的函数关系式为;(2)由题意得:,整理得:,解得:.,∵让顾客得到更大的实惠,∴.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.20、(1)详见解析;(2)1.【分析】(1)根据一元二次方程根的判别式,即可得到结论;(2)由一元二次方程根与系数的关系,得,,进而得到关于m的方程,即可求解.【详解】(1)∵方程是关于的一元二次方程,∴,∵,∴方程总有两个实根;(2)设方程的两根为,,则,根据题意得:,解得:,(舍去),∴的值为1.【点睛】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握一元二次方程根的判别式以及根与系数的关系是解题的关键.21、(1)证明见解析;(2).【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【详解】(1)是的直径,,,,,,,是的切线;(2)连接,,且,,,,,,,,,的半径为,阴影部分的面积扇形的面积三角形的面积.【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.22、(1)①见解析;②见解析;(1)1π.【分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.23、的圆周角所对的弦是直径;同弧所对的圆周角相等,【分析】连接BC,则BC为直径,根据圆周角定理,得到,再由30°所对直角边等于斜边的一半,即可得到答案.【详解】解:如图1,连接,,是⊙的直径.(90°的圆周角所对的弦是直径)且,,(同弧所对的圆周角相等),,.即⊙的半径为1.故答案为:的圆周角所对的弦是直径;同弧所对的圆周角相等;.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理进行解题.24、被拦截时,可疑船只距海岛A还有57.7海里.【分析】过点P作于点D,在中,利用等腰直角三角形性质求出PD的长,在中,求出PC的长,再求的.可得.【详解】解:过点P作于点D由题意可知,在中,∴在中,∴又∴∴∴(海里)即被拦截时,可疑船只距海岛A还有57.7海里.【点睛】此题考查了解直角三角形的应用,熟练掌握直角三角形中三角函数的运用是解题的关键.25、(1)①见解析;②S△PBQ=18﹣93;(2)存在,满足条件的t的值为6﹣13或13或6+13.【解析】(1)①如图1中,过点Q作QF⊥CD于点F,证明Rt△ADP≌Rt△PFQ即可.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由Rt△ADP≌Rt△AHP,推出PH=PD=t,AH=AD=1.由Rt△AHP△Rt△PGQ,推出QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,求出t即可解决问题.(2)分三种情形:①如图1﹣1中,若点P在线段DE上,当PQ=QB时.②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时.③如图1﹣1中,若点P在线段DC延长线上,QP=QB时,分别求解即可.【详解】(1)①证明:如图1中,过点Q作QF⊥CD于点F,∵点E是DC的中点,∴CE=DE=1=CB,又∵∠C=90°,∴∠CEB=∠CBE=45°,∵EQ=2t,DP=t,∴EF=FQ=t.∴FQ=DP,∴PF=PE+EF=PE+DP=DE=1∴PF=AD,∴Rt△ADP≌Rt△PFQ,∴AP=PQ.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由AP平分∠DPB,得∠APD=∠APB,易证Rt△ADP≌Rt△AHP,∴PH=PD=t,AH=AD=1.又∠APD=∠PAB,∴∠PAB=∠APB,∴PB=AB=8,易证Rt△AHP△Rt△PGQ,∴QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,解得t=6﹣12,∴S△PBQ=12•PB•QG=12×6×(6﹣12)=18﹣9(1)①如图1﹣1中,若点P在线段DE上,当PQ=QB时,∴AP=PQ=QB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论