




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若,则下列比例式中正确的是()A. B. C. D.2.对于反比例函数,下列说法错误的是()A.它的图象分别位于第二、四象限B.它的图象关于成轴对称C.若点,在该函数图像上,则D.的值随值的增大而减小3.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116° B.32° C.58° D.64°4.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A. B. C. D.5.在同一坐标系中,二次函数的图象与一次函数的图象可能是()A. B.C. D.6.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点O B.点P C.点M D.点N7.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为()A.2π﹣2 B.4π﹣ C.4π﹣2 D.2π﹣8.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.9.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°10.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是()A. B. C. D.11.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°12.已知函数的图象经过点(2,3),下列说法正确的是()A.y随x的增大而增大 B.函数的图象只在第一象限C.当x<0时,必y<0 D.点(-2,-3)不在此函数的图象上二、填空题(每题4分,共24分)13.抛物线y=(x-1)2-7的对称轴为直线_________.14.如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=________.15.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.16.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.17.分解因式:x3-4x18.如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若,则的面积为__________.三、解答题(共78分)19.(8分)教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.20.(8分)如图1,在和中,顶点是它们的公共顶点,,.(特例感悟)(1)当顶点与顶点重合时(如图1),与相交于点,与相交于点,求证:四边形是菱形;(探索论证)(2)如图2,当时,四边形是什么特殊四边形?试证明你的结论;(拓展应用)(3)试探究:当等于多少度时,以点为顶点的四边形是矩形?请给予证明.21.(8分)某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.(1)求与的函数关系式.(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?22.(10分)计算:23.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.(3)在(2)的条件下求出点B经过的路径长(结果保留π).24.(10分)“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?25.(12分)我市有2000名学生参加了2018年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD的面积.统计我市学生解答和得分情况,并制作如下图表:(1)求学业水平测试中四边形ABCD的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3分以上的人数为多少?26.为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据比例的基本性质直接判断即可.【详解】由,根据比例性质,两边同时除以6,可得到,故选C.【点睛】本题考查比例的基本性质,掌握性质是解题关键.2、D【分析】根据反比例函数的性质对各选项逐一分析即可.【详解】解:反比例函数,,图像在二、四象限,故A正确.反比例函数,当时,图像关于对称;当时,图像关于对称,故B正确当,的值随值的增大而增大,,则,故C正确在第二象限或者第四象限,的值随值的增大而增大,故D错误故选D【点睛】本题主要考查了反比例函数的性质.3、B【分析】根据圆周角定理求得:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【详解】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故答案为B.【点睛】本题主要考查了圆周角定理,理解同弧所对的圆周角是所对的圆心角的一半是解答本题的关键.4、D【解析】首先利用直径所对的圆周角为90°得到△ABD是直角三角形,然后利用勾股定理求得AD边的长,然后求得∠B的正弦即可求得答案.【详解】∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B=∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选D.【点睛】本题考查了圆周角定理及解直角三角形的知识,解题的关键是能够得到直角三角形并利用锐角三角函数求得一个锐角的正弦值,难度不大.5、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可.【详解】A.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a>0,b<0,故A选项不可能.B.由一次函数图像可得:a>0,b<0;由二次函数图像可得:a>0,b>0,故B选项不可能.C.由一次函数图像可得:a<0,b>0;由二次函数图像可得:a<0,b>0,故C选项可能.D.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a<0,b<0,故D选项不可能.故选:C.【点睛】本题主要考查一次函数、二次函数图像与系数的关系,根据一次函数、二次函数图像判断系数的正负是解题关键.6、B【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【详解】解:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心(如图)在M、N所在的直线上,点P在直线MN上,所以点P为位似中心.
故选:B.【点睛】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.7、A【分析】从图中明确S阴=S半-S△,然后依公式计算即可.【详解】∵∠AOB=90°,∴AB是直径,连接AB,根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知OB=2,∴OA=OBtan∠ABO=OBtan30°=2,AB=AO÷sin30°=4即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO的面积,故选A.【点睛】辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.8、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.9、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.10、A【分析】由旋转的性质可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可分析求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故选:A.【点睛】本题考查了旋转的性质,全等三角形的性质,熟练运用旋转的性质是关键.11、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.12、C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C正确.故选C.二、填空题(每题4分,共24分)13、x=1【分析】根据抛物线y=a(x-h)2+k的对称轴是x=h即可确定所以抛物线y=(x-1)2-7的对称轴.【详解】解:∵y=(x-1)2-7
∴对称轴是x=1
故填空答案:x=1.【点睛】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键.14、-1【解析】解:因为反比例函数,且矩形OABC的面积为1,所以|k|=1,即k=±1,又反比例函数的图象在第二象限内,k<0,所以k=﹣1.故答案为﹣1.15、(4,)【分析】先求得F的坐标,然后根据等腰直角三角形的性质得出直线OA的解析式为y=x,根据反比例函数的对称性得出F关于直线OA的对称点是D点,即可求得D点的坐标.【详解】∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为:(4,).【点睛】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键.16、58【解析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案.【详解】设A.B两地的实际距离是x厘米,∵比例尺为1:1000000,A.B两地的图上距离是5.8厘米,∴1:1000000=5.8:x,解得:x=5800000,∵5800000厘米=58千米,∴A、B两地的实际距离是58千米.故答案为58.【点睛】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.17、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解.【详解】解:原式=x(x2-4xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公式的结构是本题的解题关键.18、【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】∵旋转后AC的中点恰好与D点重合,
即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,设AE=EC=x,∵AB=CD=6
∴DE=DC-EC=AB-EC=6-x,AD=CD×tan∠ACD=×6=2,
根据勾股定理得:x2=(6-x)2+(2)2,
解得:x=4,
∴EC=4,
则S△AEC=EC•AD=4故答案为:4【点睛】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.三、解答题(共78分)19、见解析【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,根据等角对等边可得AF=DF,再根据邻边相等的四边形是菱形可得结论.【详解】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【点睛】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.20、(1)见解析;(2)
当∠GBC=30°时,四边形GCFD是正方形.证明见解析;(3)当∠GBC=120°时,以点,,,为顶点的四边形CGFD是矩形.证明见解析.【分析】(1)先证明四边形是平行四边形,再通过证明得出,从而证明四边形是菱形;(2)证法一:如图,连接交于,在上取一点,使得,通过证明,,,从而证明当∠GBC=30°时,四边形GCFD是正方形;证法二:如图,过点G作GH⊥BC于H,通过证明OD=OC=OG=OF,GF=CD,从而证明当∠GBC=30°时,四边形GCFD是正方形;(3)
当∠GBC=120°时,点E与点A重合,通过证明,CD=GF,,从而证明四边形是矩形.【详解】(1),,四边形是平行四边形,在和中,,,四边形是菱形.(2)
当∠GBC=30°时,四边形GCFD是正方形.证法一:如图,连接交于,在上取一点,使得,,,,,,,.,,,,,,,,设,则,,
在Rt△BGK中,,解得,
,,,,,,,四边形是平行四边形,,四边形是矩形,,四边形是正方形.证法二:如图∵,,.又,,,.过点G作GH⊥BC于H,在Rt△BHG中,∵,∴GH=BG=+1,BH=GH=3+,∴HC=BC﹣BH=2+2-(3+)=-1,∴GC=,∴OG=OC===2,∴OD=OF=4-2=2,∴OD=OC=OG=OF,四边形是矩形,∵GF=CD,四边形是正方形.(3)当∠GBC=120°时,以点,,,为顶点的四边形CGFD是矩形.
当∠GBC=120°时,点E与点A重合.,∴,.
∵四边形ABCD和四边形GBEF是平行四边形,∴,,AB=CD,AB=GF,∴,CD=GF,
四边形是平行四边形.∵,四边形是矩形.【点睛】本题考查了几何的综合应用题,掌握矩形和正方形的性质以及判定、勾股定理、全等三角形的判定是解题的关键.21、(1)(0≤x≤10);(2)32元;(3)售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【分析】(1)利用利润=每件的利润×数量即可表示出与的函数关系式;(2)令第(1)问中的y值为2520,解一元二次方程即可得出x的值;(3)根据二次函数的性质求得最大值即可.【详解】(1)根据题意有:每个收纳盒售价不能高于40元(2)令即解得或此时售价为30+2=32元(3)∵为正整数∴当或时,y取最大值,最大值为此时的售价为30+6=6元或30+7=37元答:售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查二次函数的应用,掌握二次函数的性质是解题的关键.22、-1【分析】将,代入计算即可得到答案.【详解】=-4+1+,=-3+2,=-1.【点睛】此题考查实数的混合计算,熟记特殊角度的三角函数值,掌握正确的计算顺序是解题的关键.23、(1)见解析,A1(3,﹣3);(2)见解析;(3)【分析】(1)延长BC到B1,使B1C=2BC,延长AC到A1,使A1C=2AC,再顺次连接即可得△A1B1C,再写出A1坐标即可;(2)分别作出A,B绕C点顺时针旋转90°后的对应点A2,B2,再顺次连接即可得△A2B2C.(3)点B的运动路径为以C为圆心,圆心角为90°的弧长,利用弧长公式即可求解.【详解】解:(1)如图,△A1B1C为所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C为所作;(3)CB=,所以点B经过的路径长=π.【点睛】本题考查网格作图与弧长计算,熟练掌握位似与旋转作图,以及弧长公式是解题的关键.24、(1)购进一件甲种礼品需要50元,一件乙种礼品需70元;(2)最多可购进20件甲种礼品.【分析】(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元.根据题意得:,解方程可得;(2)设购进甲m件,则购进乙件.根据题意得:,解不等式可得.【详解】解:(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元.根据题意得:解得:x=50经检验,x=50是原方程的解,且符合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国飞镖机行业发展研究报告
- 2025至2030年中国防静电无尘工作椅行业发展研究报告
- 2025至2030年中国银行型点钞机行业发展研究报告
- 2025至2030年中国钛过滤棒行业发展研究报告
- 2025至2030年中国速生经济林苗木行业发展研究报告
- 2025至2030年中国超豪华型汽车电脑四轮定位仪行业发展研究报告
- 2025至2030年中国蜂窝休闲帽行业发展研究报告
- 2025至2030年中国自行车铝圈行业发展研究报告
- 2025至2030年中国耐强酸强碱膜行业发展研究报告
- 细胞周期调控机制研究
- 2025年档案管理专业考试试卷及答案
- 多重耐药菌病人的处理流程
- 驻村第一书记工作总结模版
- 2025物理大一轮复习讲义复习讲义答案精析
- 2025年高考政治抢押秘籍(江苏专用)时政热点04哪吒2(学生版+解析)
- 广东省深圳市2025年中考模拟历史试题四套附参考答案
- 粤语知识测试题及答案
- 2025年北京市东城区初三语文一模作文《根基》写作指导+范文
- 太阳能光伏发电系统多目标容量优化配置技术研究
- 中央2024年中国合格评定国家认可中心招聘笔试历年参考题库附带答案详解
- 2025年高考化学考试易错题易错类型18物质的分离、提纯与鉴别(7大易错点)(学生版+解析)
评论
0/150
提交评论