基本不等式教学过程_第1页
基本不等式教学过程_第2页
基本不等式教学过程_第3页
基本不等式教学过程_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2基本不等式学习目标1.掌握基本不等式及推导过程.2.能熟练运用基本不等式比较两实数的大小.3.能初步运用基本不等式进行证明和求最值.知识点基本不等式1.如果a>0,b>0,eq\r(ab)≤eq\f(a+b,2),当且仅当a=b时,等号成立.其中eq\f(a+b,2)叫做正数a,b的算术平均数,eq\r(ab)叫做正数a,b的几何平均数.2.变形:ab≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2,a,b∈R,当且仅当a=b时,等号成立.a+b≥2eq\r(ab),a,b都是正数,当且仅当a=b时,等号成立.例题1.对于任意a,b∈R,a2+b2≥2ab.(√)2.n∈N*时,n+eq\f(2,n)>2eq\r(2).(√)3.x≠0时,x+eq\f(1,x)≥2.(×)4.若a>0,则a3+eq\f(1,a2)的最小值为2eq\r(a).(×)一、利用基本不等式比较大小例1某工厂生产某种产品,第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x(a,b,x均大于零),则()A.x=eq\f(a+b,2) B.x≤eq\f(a+b,2)C.x>eq\f(a+b,2) D.x≥eq\f(a+b,2)考点基本不等式比较大小题点利用基本不等式比较大小答案B解析第二年产量为A+A·a=A(1+a),第三年产量为A(1+a)+A(1+a)·b=A(1+a)(1+b).若平均增长率为x,则第三年产量为A(1+x)2.依题意有A(1+x)2=A(1+a)(1+b),∵a>0,b>0,x>0,∴(1+x)2=(1+a)(1+b)≤eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1+a+1+b,2)))2,∴1+x≤eq\f(2+a+b,2)=1+eq\f(a+b,2),∴x≤eq\f(a+b,2).反思感悟基本不等式eq\f(a+b,2)≥eq\r(ab)一端为和,一端为积,使用基本不等式比较大小要善于利用这个桥梁化和为积或者化积为和.跟踪训练1若0<a<1,0<b<1,且a≠b,试找出a+b,a2+b2,2eq\r(ab),2ab中的最大者.解∵0<a<1,0<b<1,且a≠b,∴a+b>2eq\r(ab),a2+b2>2ab,∴四个数中最大的应从a+b,a2+b2中选择.而a2+b2-(a+b)=a(a-1)+b(b-1),∵0<a<1,0<b<1,∴a(a-1)<0,b(b-1)<0,∴a2+b2-(a+b)<0,即a2+b2<a+b,∴a+b最大.二、利用基本不等式直接求最值例2(1)当x>0时,求eq\f(12,x)+4x的最小值;(2)当x<0时,求eq\f(12,x)+4x的最大值;(3)当x>1时,求2x+eq\f(8,x-1)的最小值;(4)已知4x+eq\f(a,x)(x>0,a>0)在x=3时取得最小值,求a的值.解(1)∵x>0,∴eq\f(12,x)>0,4x>0.∴eq\f(12,x)+4x≥2eq\r(\f(12,x)·4x)=8eq\r(3).当且仅当eq\f(12,x)=4x,即x=eq\r(3)时取最小值8eq\r(3),∴当x>0时,eq\f(12,x)+4x的最小值为8eq\r(3).(2)∵x<0,∴-x>0.则eq\f(12,-x)+(-4x)≥2eq\r(\f(12,-x)·-4x)=8eq\r(3),当且仅当eq\f(12,-x)=-4x时,即x=-eq\r(3)时取等号.∴eq\f(12,x)+4x≤-8eq\r(3).∴当x<0时,eq\f(12,x)+4x的最大值为-8eq\r(3).(3)2x+eq\f(8,x-1)=2eq\b\lc\[\rc\](\a\vs4\al\co1(x-1+\f(4,x-1)))+2,∵x>1,∴x-1>0,∴2x+eq\f(8,x-1)≥2×2eq\r(4)+2=10,当且仅当x-1=eq\f(4,x-1),即x=3时,取等号.(4)4x+eq\f(a,x)≥2eq\r(4x·\f(a,x))=4eq\r(a),当且仅当4x=eq\f(a,x),即a=4x2=36时取等号,∴a=36.反思感悟在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件是否具备.跟踪训练2已知x>0,y>0,且x+y=8,则(1+x)·(1+y)的最大值为()A.16B.25C.9D.36答案B解析因为x>0,y>0,且x+y=8,所以(1+x)(1+y)=1+x+y+xy=9+xy≤9+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x+y,2)))2=9+42=25,因此当且仅当x=y=4时,(1+x)·(1+y)取最大值25.三、用基本不等式证明不等式例3已知a,b,c都是正数,求证:a+b+c-eq\r(ab)-eq\r(bc)-eq\r(ac)≥0.证明∵a,b,c都是正数,∴a+b≥2eq\r(ab),b+c≥2eq\r(bc),a+c≥2eq\r(ac),∴a+b+b+c+a+c≥2(eq\r(ab)+eq\r(bc)+eq\r(ac)),∴a+b+c≥eq\r(ab)+eq\r(bc)+eq\r(ac),即a+b+c-eq\r(ab)-eq\r(bc)-eq\r(ac)≥0.反思感悟利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.跟踪训练3若实数a<0,求证:a+eq\f(1,a)≤-2,并指出等号成立的条件.证明根据题意,a<0,则-a>0,左式=a+eq\f(1,a)=-eq\b\lc\[\rc\](\a\vs4\al\co1(-a+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,a))))),又由(-a)+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,a)))≥2eq\r(-a×\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,a))))=2,则有a+eq\f(1,a)≤-2,当且仅当a=-1时,等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论