崇左市重点中学2022-2023学年数学九年级第一学期期末综合测试试题含解析_第1页
崇左市重点中学2022-2023学年数学九年级第一学期期末综合测试试题含解析_第2页
崇左市重点中学2022-2023学年数学九年级第一学期期末综合测试试题含解析_第3页
崇左市重点中学2022-2023学年数学九年级第一学期期末综合测试试题含解析_第4页
崇左市重点中学2022-2023学年数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,⊙P的圆心坐标是(-3,a)(a>3),半径为3,函数y=-x的图像被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.2.如图是由几个大小相同的小正方体组成的立体图形的俯视图,则这个立体图形可能是下图中的()A. B. C. D.3.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上4.如图图形中,是中心对称图形的是()A. B. C. D.5.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根6.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.107.如图所示,给出下列条件:①;②;③;④,其中单独能够判定的个数为()A. B. C. D.8.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE9.已知正比例函数y=ax与反比例函数在同一坐标系中的图象如图,判断二次函数y=ax2+k在坐系中的大致图象是()A. B.C. D.10.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为()A.﹣5 B.﹣1 C.﹣1.25 D.1二、填空题(每小题3分,共24分)11.半径为的圆中,弦、的长分别为2和,则的度数为_____.12.点A(﹣5,y1),B(3,y2)都在双曲线y=,则y1,y2的大小关系是_____.13.根据下列统计图,回答问题:该超市10月份的水果类销售额___________11月份的水果类销售额(请从“>”“=”或“<”中选一个填空).14.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),则点D的坐标是_____.15.一块含有角的直角三角板按如图所示的方式放置,若顶点的坐标为,直角顶点的坐标为,则点的坐标为______.16.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.17.一元二次方程的两个实数根为,则=_____.18.如图,已知正六边形内接于,若正六边形的边长为2,则图中涂色部分的面积为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.20.(6分)如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.21.(6分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.22.(8分)(2016湖南省永州市)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?23.(8分)如图1.正方形的边长为,点在上,且.如图2.将线段绕点逆时针旋转,设旋转角为,并以为边作正方形,连接试问随着线段的旋转,与有怎样的数量关系?说明理由;如图3,在的条件下,若点恰好落在线段上,求点走过的路径长(保留).24.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF,BE.(1)求证:直线CF为⊙O的切线;(2)若DE=6,求⊙O的半径长.25.(10分)“十一”黄金周期间,西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x人参加这一旅游项目的团购活动.(1)当x=35时,每人的费用为______元.(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.26.(10分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=____;同种操作,如图3,S阴影3=1--()2-()3=__________;如图4,S阴影4=1--()2-()3-()4=___________;……若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.于是归纳得到:+()2+()3+…+()n=_________.(理论推导)(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②-①得:2S—S=22017—1,即=22017-1.即1+2+22+23+24+…+22015+22016=22017-1根据上述材料,试求出+()2+()3+…+()n的表达式,写出推导过程.(规律应用)(3)比较+++……__________1(填“”、“”或“=”)

参考答案一、选择题(每小题3分,共30分)1、B【分析】如图所示过点P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可确定D点坐标,可得△OCD为等腰直角三角形,得到△PED也为等腰直角三角形,又PE⊥AB,由垂径定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最终求出a的值.【详解】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D点坐标为(-3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键.2、D【分析】由俯视图判断出组合的正方体的几何体的列数即可.【详解】根据给出的俯视图,这个立体图形的第一排至少有3个正方体,第二排有1个正方体.故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点4、D【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.5、C【分析】把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.7、B【解析】由已知△ABC与△ABD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】解::①∵,∠A为公共角,∴;②∵,∠A为公共角,∴;③虽然,但∠A不是已知的比例线段的夹角,所以两个三角形不相似;④∵,∴,又∵∠A为公共角,∴.综上,单独能够判定的个数有3个,故选B.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.8、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB与BD:AB=CE:ACAB:AC=AD:AE,根据平行线分线段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【详解】A、∵AD:DB=AE:EC,∴DE∥BC,故本选项能判定DE∥BC;

B、由DE:BC=AD:AB,不能判定DE∥BC,故本选项不能判定DE∥BC.

C、∵BD:AB=CE:AC,∴DE∥BC,故本选项能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本选项能判定DE∥BC.

所以选B.【点睛】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.9、B【解析】根据正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,然后根据二次函数图象的性质即可得出答案.【详解】正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,

则二次函数y=ax2+k的图象开口向下,且与y轴的交点在y轴的正半轴,

所以大致图象为B图象.

故选B.【点睛】本题考查了二次函数及正比例函数与反比例函数的图象,属于基础题,关键是注意数形结合的思想解题.10、A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.二、填空题(每小题3分,共24分)11、或【分析】根据题意利用垂径定理及特殊三角函数进行分析求解即可.【详解】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,弦、的长分别为1和,直径为,∴AO=,∴∴,即有,同理∴∠BAC=45°+30°=75°,或∠BAC′=45°-30°=15°.∴∠BAC=15°或75°.故答案为:或.【点睛】本题考查圆的垂径定理及解直角三角形的相关性质,解答此题时要进行分类讨论,不要漏解,避免失分.12、y1<y1【分析】根据反比例函数图象上的点的坐标满足函数解析式,即可得到y1,y1的值,进而即可比较大小.【详解】∵点A(﹣5,y1),B(3,y1)都在双曲线y=上,当x=﹣5时,y1=﹣,当x=3时,y1=,∴y1<y1.故答案是:y1<y1.【点睛】本题主要考查反比例函数图象上点的纵坐标大小比较,掌握反比例函数图象上的点的坐标满足函数解析式,是解题的关键.13、>【分析】根据统计图,分别求出该超市10月份的水果类销售额与11月份的水果类销售额,比较大小即可.【详解】∵10月份的水果类销售额为(万元),11月份的水果类销售额为(万元),∴10月份的水果类销售额>11月份的水果类销售额.故答案是:>【点睛】本题主要考查从统计图种提取信息,通过观察统计图,得到有用的信息,是解题的关键.14、(3,2)【分析】根据题意和函数图象,可以用含m代数式表示出n,然后根据点A和点E都在改反比例函数图象上,即可求得m的值,进而求得点E的坐标,从而可以写出点D的坐标,本题得以解决.【详解】解:由题意可得,n=m+2,则点E的坐标为(m+2,),∵点A和点E均在反比例函数y=(k≠0)的图象上,∴2m=,解得,m=1,∴点E的坐标为(3,),∴点D的坐标为(3,2),故答案为:(3,2).【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、【分析】过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△CAO,设点B坐标为(x,y),根据相似三角形的性质即可求解.【详解】过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴,∴△BCD∽△CAO,∴,设点B坐标为(x,y),则,,∴=AC=2,∵有图知,,∴,解得:,则y=3.即点B的坐标为.故答案为【点睛】本题考查了坐标与图形性质、相似三角形的判定及性质、特殊角的三角函数值,解题的关键是要求出BC和AC的值和30度角的三角函数联系起来,作辅助线构造直角三角形为三角函数作铺垫.16、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、1【分析】直接根据一元二次方程根与系数的关系进行求解即可.【详解】的两个实数根为,,.故答案为1.【点睛】本题主要考查一元二次方程根与系数的关系,熟记根与系数的关系是解题的关键.18、【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:.故答案为:.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.三、解答题(共66分)19、(1)作图见解析;(2)【解析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A1B1C1,△A2B2C2,都是符合题意的图形;(2)A1C1的长为:.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.20、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值为﹣3或,理由见解析【分析】(1)由抛物线y=x2+x+3可求出点C,P,A的坐标,再用待定系数法,可求出直线AC的解析式;(2)在OC上取点H(0,),连接HF,AH,求出AH的长度,证△HOF∽△FOC,推出HF=CF,由AF+CF=AF+HF≥AH,即可求解;(3)先求出正方形的边长,通过△ARM∽△ACO将相关线段用含t的代数式表示出来,再分三种情况进行讨论:当∠O'RP=90°时,当∠PO'R=90°时,当∠O'PR=90°时,分别构造相似三角形,即可求出t的值,其中第三种情况不存在,舍去.【详解】(1)在抛物线y=x2+x+3中,当x=0时,y=3,∴C(0,3),当y=3时,x1=0,x2=2,∴P(2,3),当y=0时,则x2+x+3=0,解得:x1=﹣4,x2=6,B(﹣4,0),A(6,0),设直线AC的解析式为y=kx+3,将A(6,0)代入,得,k=﹣,∴y=﹣x+3,∴点P坐标为P(2,3),直线AC的解析式为y=﹣x+3;(2)在OC上取点H(0,),连接HF,AH,则OH=,AH=,∵,,且∠HOF=∠FOC,∴△HOF∽△FOC,∴,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值为;(3)∵正方形OMNG的顶点N恰好落在线段AC上,∴GN=MN,∴设N(a,a),将点N代入直线AC解析式,得,a=﹣a+3,∴a=2,∴正方形OMNG的边长是2,∵平移的距离为t,∴平移后OM的长为t+2,∴AM=6﹣(t+2)=4﹣t,∵RM∥OC,∴△ARM∽△ACO,∴,即,∴RM=2﹣t,如图3﹣1,当∠O'RP=90°时,延长RN交CP的延长线于Q,∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,∴∠PRQ=∠RO'M,又∵∠Q=∠O'MR=90°,∴△PQR∽△RMO',∴,∵PQ=2+t-2=t,QR=3﹣RM=1+t,∴,解得,t1=﹣3﹣(舍去),t2=﹣3;如图3﹣2,当∠PO'R=90°时,∵∠PO'E+∠RO'M=90°,∠PO'E+∠EPO'=90°,∴∠RO'M=∠EPO',又∵∠PEO'=∠O'MR=90°,∴△PEO'∽△O'MR,∴,即,解得,t=;如图3﹣3,当∠O'PR=90°时,延长O’G交CP于K,延长MN交CP的延长线于点T,∵∠KPO'+∠TPR=90°,∠KO'P+∠KPO'=90°,∴∠KO'P=∠TPR,又∵∠O'KP=∠T=90°,∴△KO'P∽△TPR,∴,即,整理,得t2-t+3=0,∵△=b2﹣4ac=﹣<0,∴此方程无解,故不存在∠O'PR=90°的情况;综上所述,△O′PR为直角三角形时,t的值为﹣3或.【点睛】本题主要考查二次函数的图象和相似三角形的综合,添加合适的辅助线,构造相似三角形,是解题的关键.21、(1)证明见解析;(2)BM=,理由见解析.【分析】(1)利用圆周角定理得到∠ADB=90°,然后就利用等角的余角相等得到结论;(2)如图,连接OD,DM,先计算出BD=8,OA=5,再证明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中点M,连接DM、OD,如图,证明∠2=∠4得到∠ODM=90°,根据切线的判定定理可确定DM为⊙O的切线,然后计算BM的长即可.【详解】(1)∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理,掌握切线的判定定理及圆周角定理是关键.22、(1)10%;(2)1.【解析】试题分析:(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)2”,列出方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”表示出总利润,再根据总利润不少于3210元,即可的出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.2.∴m≥1.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品1件.考点:一元二次方程的应用;一元一次不等式的应用.23、(1);(2)【分析】(1)利用已知条件得出,从而可得出结论(2)连接,交于连接,可得出CG=AG,接着可证明是等边三角形.,再找出,最后利用弧长公式求解即可.【详解】解:.理由如下:由题意,可知.又,..如图,连接,交于连接.四边形是正方形,与互相垂直平分.点在线段上,垂直平分..由题意,知,.又正方形的边长为,.,即是等边三角形...则点走过的路径长就是以为圆心,长为半径,且圆心角为105°的一段弧的弧长.即所以点走过的路径长是.【点睛】本题是一道利用旋转的性质来求解的题目,考查到的知识点有全等三角形的判定及性质,等边三角形的判定,旋转的性质以及求弧长的公式.综合性较强.24、(1)详见解析;(2)3【分析】(1)连接OD,由BC为⊙O的直径,点E为△ABC的内心,证得OD⊥BC,再根据中位线定理证得OD∥CF,即可证得结论;(2)根据圆周角定理证得∠EBD=∠BED,即BD=DE,根据正弦函数即可求出半径的长【详解】(1)连接OD∵BC为⊙O的直径∴∠BAC=90°∵点E为△ABC的内心∴∠CAD=∠BAD=45°,∠ABE=∠EBC∴∠BOD=∠COD=90°,即OD⊥BC又BD=DF,OB=OC∴OD∥CF∴BC⊥CF,BC为⊙O的直径∴直线CF为⊙O的切线;(2)∵,∴∠CAD=∠CBD,∵OD⊥BC,∴,∴∠CBD=∠BAE,又∵∠ABE=∠EBC,∴∠EBD=∠EBC+∠CBD=∠BAE+∠ABE=∠BED,∴BD=DE=6,Rt△OBD中OB=OD,∴OB=BD=×6=3,【点睛】本题考查三角形的内切圆与内心、切线的判定、等腰三角形的判定、直角三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论