重庆綦江南川巴县2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第1页
重庆綦江南川巴县2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第2页
重庆綦江南川巴县2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第3页
重庆綦江南川巴县2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第4页
重庆綦江南川巴县2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB()A. B. C.1 D.2.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且3.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110° B.120° C.150° D.160°4.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10° B.30° C.40° D.70°5.已知二次函数的图象与x轴只有一个交点,则这个交点的坐标为()A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)6.﹣2019的倒数的相反数是()A.﹣2019 B. C. D.20197.如图,在矩形中,,为边的中点,将绕点顺时针旋转,点的对应点为,点的对应点为,过点作交于点,连接、交于点,现有下列结论:①;②;③;④点为的外心.其中正确的是()A.①④ B.①③ C.③④ D.②④8.如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=()A.1:2 B.2:3 C.3:4 D.2:59.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为()A. B.C. D.10.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.11.在同一坐标系中,一次函数与二次函数的图象可能是().A. B. C. D.12.如图,缩小后变为,其中、的对应点分别为、,点、、、均在图中格点上,若线段上有一点,则点在上对应的点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.正六边形的中心角为_____;当它的半径为1时,边心距为_____.14.若A(7,y1),B(5,y2),都是反比例函数的图象上的点,则y1_____y2(填“<”、”﹣”或”>”).15.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.16.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.17.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.18.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是_____.三、解答题(共78分)19.(8分)已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.(1)求点C的坐标;(2)求抛物线的解析式;(3)①求直线AC的解析式;②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.20.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.21.(8分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)22.(10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.23.(10分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.(1)在方格纸中画出以为一边的锐角等腰三角形,点在小正方形的顶点上,且的面积为;(2)在方格纸中画出以为一边的直角三角形,点在小正方形的顶点上,且的面积为5;(3)连接,请直接写出线段的长.24.(10分)如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.25.(12分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E,(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.26.如图已知一次函数y1=2x+5与反比例函数y2=(x<0)相交于点A,B.(1)求点A,B的坐标;(2)根据图象,直接写出当y₁≤y₂时x的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【分析】连接AB,分别利用勾股定理求出△AOB的各边边长,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【详解】解:连接AB如图,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故选C【点睛】本题考查了在正方形网格中,勾股定理及勾股定理逆定理的应用.2、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.3、A【解析】设C′D′与BC交于点E,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.4、D【分析】由旋转的性质可得旋转角为∠AOC=70°.【详解】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.【点睛】本题考查了旋转的性质,解决本题的关键是熟练掌握旋转的意义和性质,能够有旋转的性质得到相等的角.5、C【分析】根据△=b2-4ac=0时,抛物线与x轴有一个交点列出方程,解方程求出k,再根据二次函数的图象和性质解答.【详解】∵二次函数的图象与x轴只有一个交点,∴,,解得:,∴二次函数,当时,,故选C.【点睛】本题考查的是抛物线与x轴的交点,掌握当△=b2-4ac=0时,抛物线与x轴有一个交点是解题的关键.6、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:﹣2019的倒数是,的相反数为,故答案为:C.【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.7、B【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出;根据,且,即可得出,再根据,即可得出不成立;根据,,运用射影定理即可得出,据此可得成立;根据不是的中点,可得点不是的外心.【详解】解:为边的中点,,又,,,,,又,垂直平分,,,故①正确;如图,延长至,使得,由,,可得,可设,,则,由,,可得,,,,由,可得,而,,,即,不成立,故②错误;,,,又,,,故③正确;,是的外接圆的直径,,当时,,不是的中点,点不是的外心,故④错误.综上所述,正确的结论有①③,故选:B.【点睛】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.8、B【分析】由平行四边形的性质可得AD=BC,AD∥BC,可证△DEG∽△CFG,可得=.【详解】∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵F为BC的中点,∴CF=BF=BC=AD,∵DE:AD=1:3,∴DE:CF=2:3,∵AD∥BC,∴△DEG∽△CFG,∴=.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质及相似三角形的判定与性质.9、C【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,通过平行可证明∽,∽,∽,然后利用相似的性质及三等分点可求出、、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可.【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:∵矩形ABCD的面积为1,∴,∵B、D为线段EF的三等分点,∴,,,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴即,∴,∴,∵四边形ABCD是矩形,∴,∵,,∴,,又∵,∴四边形BGOH是矩形,根据反比例函数的比例系数的几何意义可知:,∴,∴又∵,即,∴,∴直线EF的解析式为,令,得,令,即,解得,∴,,∵F点在轴的上方,∴,∴,,∵,即,∴.故选:C.【点睛】本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧.10、A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:.故选A.【点睛】本题考查了随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11、D【解析】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.一次函数的图象.12、D【分析】根据A,B两点坐标以及对应点C,D点的坐标得出坐标变化规律,进而得出P′的坐标.【详解】解:∵△ABO缩小后变为△CDO,其中A、B的对应点分别为C、D,点A、B、C、D均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),C点坐标为:(2,3),D点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在CD上的对应点P′的坐标为:().故选D.【点睛】此题主要考查了点的坐标的确定,位似图形的性质,根据已知得出对应点坐标的变化是解题关键.二、填空题(每题4分,共24分)13、60°【分析】首先根据题意作出图形,然后可得△AOB是等边三角形,然后由三角函数的性质,求得OH的长即可得答案.【详解】如图所示:∵六边形ABCDE是正六边形,∴∠AOB==60°,∴△AOB是等边三角形,∴OA=OB=AB=1,作OM⊥AB于点M,∵OA=1,∠OAB=60°,∴OM=OA•sin60°=1×=.【点睛】本题考查正多边形和圆及解直角三角形,正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角;正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距;熟记特殊角的三角函数值及三角函数的定义是解题关键.14、<【分析】先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵反比例函数y=中,k=1>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵7>5,∴y1<y1.故答案为:<.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的增减性与比例系数k的符号之间的关系是关键.15、【分析】先得出抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),所以平移后的抛物线解析式为:.故答案为:.【点睛】本题考查的知识点是二次函数图象与几何变化,熟记点的平移规律是解此题的关键.16、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【点睛】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.17、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.18、k⩾-94【解析】利用判别式,根据不等式即可解决问题.【详解】∵关于x的一元二次方程kx2+3x﹣1=1有实数根,∴△≥1且k≠1,∴9+4k≥1,∴k⩾-94,且故答案为k⩾-94且【点睛】本题考查根的判别式,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.上面的结论反过来也成立.三、解答题(共78分)19、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【分析】(1)将代入二次函数解析式即可得点C的坐标;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC的解析式为,把A(3,0),C代入即可得直线AC的解析式;②存在点P,使得△PAD的面积等于△DAE的面积;设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根据S△PAD=S△DAE时,即可得PD=DE,即可得出结论.【详解】解:(1)由y=ax2+bx+3,令∴点C的坐标为(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(3)①设直线直线AC的解析式为,把A(3,0),C代入得,解得,∴直线AC的解析式为;②存在点P,使得△PAD的面积等于△DAE的面积,理由如下:设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,当S△PAD=S△DAE时,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【点睛】本题考查了用待定系数法求解析式,二次函数的综合,掌握知识点是解题关键.20、(1)详见解析;(2)详见解析;(3)AF=.【分析】(1)先根据角平分线得出∠CAD=∠CAB,进而判断出△ADC∽△ACB,即可得出结论;(2)先利用直角三角形的性质得出CE=AE,进而得出∠ACE=∠CAE,从而∠CAD=∠ACE,即可得出结论;(3)由(1)的结论求出AC,再求出CE=3,最后由(2)的结论得出△CFE∽△AFD,即可得出结论.【详解】解:(1)∵AC平分∠BAD,∴∠CAD=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB;(2)在Rt△ABC中,∵E为AB的中点,∴CE=AE(直角三角形斜边的中线等于斜边的一半),∴∠ACE=∠CAE,∵AC平分∠BAD,∴∠CAD=∠CAE,∴∠CAD=∠ACE,∴CE∥AE;(3)由(1)知,AC2=AD•AB,∵AD=4,AB=6,∴AC2=4×6=24,∴AC=2,在Rt△ABC中,∵E为AB的中点,∴CE=AB=3,由(2)知,CE∥AD,∴△CFE∽△AFD,∴,∴,∴AF=.【点睛】此题考查的是相似三角形的判定及性质、直角三角形的性质和平行线的判定,掌握相似三角形的判定及性质、直角三角形斜边的中线等于斜边的一半和平行线的判定是解决此题的关键.21、47.3米【解析】试题分析:过点C作CD⊥AB,交AB于点D;设AD=x.本题涉及到两个直角三角形△ADC、△BDC,应利用其公共边CD构造等量关系,解三角形可得AD、BD与x的关系;借助AB=AD-BD构造方程关系式,进而可求出答案.试题解析:过点C作CD⊥AB,交AB于点D;设CD=x,在Rt△ADC中,有AD==CD=x,在Rt△BDC中,有BD=x,又有AB=AD-BD=20;即x-x=20,解得:x=10(3+)≈47.3(米).答:气球离地面的高度CD为47.3米.22、(1)证明见解析;(2)1.【分析】(1)首先连接OD,根据等腰三角形的性质可证∠C=∠ODC,从而可证∠B=∠ODC,根据DF⊥AB可证DF⊥OD,所以可证线DF与⊙O相切;(2)根据圆内接四边形的性质可得:△BCA∽△BED,所以可证:,解方程求出BE的长度,从而求出AC的长度.【详解】解:(1)如图所示,连接,∵,∴,∵,∴,∴,∴∥,∵,∴;∵点在⊙O上,∴直线与⊙O相切;(2)∵四边形是⊙O的内接四边形,∴,∵,∴,∴△BED∽△BCA,∴,∵OD∥AB,,∴,∵,∴,∴,∴【点睛】本题考查切线的判定与性质;相似三角形的判定与性质.23、(1)作图见解析(2)作图见解析(3)【分析】(1)利用等腰三角形的性质得出对应点位置,进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论