第十二章全等三角形复习(期末)教程_第1页
第十二章全等三角形复习(期末)教程_第2页
第十二章全等三角形复习(期末)教程_第3页
第十二章全等三角形复习(期末)教程_第4页
第十二章全等三角形复习(期末)教程_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第12章全等三角形复习(期末)贺胜中小学八年级数学组全等形全等三角形性质应用全等三角形对应边(高线、中线)相等全等三角形对应角(对应角的平分线)相等全等三角形的面积相等SSSSASASAAASHL解决问题角的平分线的性质角平分线上的一点到角的两边距离相等

角的内部到角的两边的距离的点在角的平分线上判定条件(尺规作图)(判定三角形全等必须有一组对应边相等.)一本章知识结构二、全等三角形识别思路复习

如图,已知△ABC和△DCB中,AB=DC,请补充一个条件-----------------------,使△ABC≌△DCB。思路1:找夹角找第三边找直角已知两边:∠ABC=∠DCB(SAS)AC=DB(SSS)∠A=∠D=90°(HL)ABCD

如图,已知∠C=∠D,要识别△ABC≌△ABD,需要添加的一个条件是------------------。思路2:找任一角已知一边一角(边与角相对)(AAS)∠CAB=∠DAB或者∠CBA=∠DBAACBD

如图,已知∠1=∠2,要识别△ABC≌△CDA,需要添加的一个条件是-----------------思路3:已知一边一角(边与角相邻):ABCD21找夹这个角的另一边找夹这条边的另一角找边的对角AD=CB∠ACD=∠CAB∠D=∠B(SAS)(ASA)(AAS)

如图,已知∠B=∠E,要识别△ABC≌△AED,需要添加的一个条件是--------------思路4:已知两角:找夹边找一角的对边ABCDEAB=AEAC=AD或DE=BC(ASA)(AAS)三找全等三角形对应边和对应角的方法:1、从长短大小两个全等三角形的一对最长边(最大角)是对应边(角);一对最短边(最小角)是对应边(角)2、从对应边与对应角的关系对应角所对的边为对应边;对应边所对的角为对应角;两个对应角所夹的边为对应边;两条对应边所夹的角为对应角。3、从位置公共边为对应边;公共角为对应角;对顶角为对应角四三角形中常见辅助线的作法例1如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△ACD,得AC=A'B.这样将AC转移到△A'BA中,根据三角形三边关系定理可解.1.延长中线构造全等三角形2、引平行线构造全等三角形例2如图2,已知△ABC中,AB=AC,D在AB上,E是AC延长线上一点,且BD=CE,DE与BC交于点F.求证:DF=EF.提示:此题辅助线作法较多,如:①作DG∥AE交BC于G;②作EH∥BA交BC的延长线于H;再通过证三角形全等得DF=EF.例3如图3,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC于E.求证:BD=DE=CE.

提示:连结DC,证△ECD是等腰三角形.3、作连线构造等腰三角形

4、利用翻折,构造全等三角形.例4如图4,已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D.求证:AC=AB+BD.提示:将△ADB沿AD翻折,使B点落在AC上点B'处,再证BD=B'D=B'C,易得△ADB≌△ADB',△B'DC是等腰三角形,于是结论可证.

5、作三角形的中位线

例5如图5,已知四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线交EF的延长线于点M、N.求证:∠BME=∠CNE.提示:连结AC并取中点O,再连结OE、OF.则OE∥AB,OF∥CD,故∠1=∠BME,∠2=∠CNE.、且OE=OF,故∠1=∠2,可得证.

例1.如图,在△ABC中,两条角平分线BD和CE相交于点哦,若∠BOC=1200,那么∠A的度数是

.ABCDEO600

例2、如图,AB=AC,BD=CD,BH=CH,图中有几组全等的三角形?它们全等的条件是什么?HDCBA解:有三组。在△ABH和△ACH中∵AB=AC,BH=CH,AH=AH∴△ABH≌△ACH(SSS);∵BD=CD,BH=CH,DH=DH∴△DBH≌△DCH(SSS)

∵AB=AC,BD=CD,AD=AD∴△ABD≌△ACD(SSS);在△ABH和△ACH中在△ABH和△ACH中解:①∵E、F分别是AB,CD的中点()又∵AB=CD∴AE=CF在△ADE与△CBF中AE==∴△ADE≌△CBF()∴AE=ABCF=CD()1212例3.如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.①△ADE≌△CBF②∠A=∠C线段中点的定义CFADABCDSSS△ADE≌△CBF全等三角形对应角相等已知ADBCFECB②∵∴∠A=∠C()=

例4.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD。求证:AF∥DEABCDEF∆ABF≌∆DCE(SAS)∴∠AFB=∠DEC∴AF//DE∵AB∥CD,AD∥BC(已知)∴∠1=∠2∠3=∠4

在△ABC与△CDA中∠1=∠2(已证)AC=AC

(公共边)∠3=∠4(已证)∴△ABC≌△CDA(ASA)∴AB=CDBC=AD(全等三角形对应边相等)证明:连结AC.例5.如图,AB∥CD,AD∥BC,那么AB=CD吗?为什么?AD与BC呢?ABCD2341

例6.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:BC=DEABCDE12证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC∴∠BAC=∠DAE在∆ABC和∆ADE中∴∆ABC≌∆ADE(AAS)∴BC=DE解∵

CE⊥AB,DF⊥AC(已知)∴∠AEC=∠BFD=Rt∠∵AF=BE(已知)即AE+EF=BF+EFAE=BF∵AC=BD∴RtΔACE≌RtΔBDF(HL)∴CE=DF(全等三角形的对应边相等)ABCDEF

例7.如图,已知CE⊥AB,DF⊥AB,AC=BD,AF=BE,则CE=DF。请说明理由。

例8.已知:∠ACB=∠ADB=900,AC=AD,P是AB上任意一点,求证:CP=DP

CABDP证明:在Rt∆ABC和Rt∆ABD中∴Rt∆ABC≌Rt∆ABD∴∠CAB=∠DAB∴∆APC≌∆APD(SAS)∴CP=DP

例9.如图CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点O,且∠1=∠2,求证OB=OC。

证明:∵∠1=∠2

CD⊥AB,BE⊥AC

∴OD=OE(角平分线的性质定理)

在△OBD与△OCE中

∠BOD=∠COE(对顶角相等)

OD=OE(已证)

∠ODB=∠OEC(垂直的定义)

∴△OBD≌△OCE(ASA)

∴OB=OC

例10.如图A、B、C在一直线上,△ABD,△BCE都是等边三角形,AE交BD于F,DC交BE于G,求证:BF=BG。

证明:∵△ABD,△BCE是等边三角形。

∴∠DBA=△EBC=60°

∵A、B、C共线∴∠DBE=60°

∴∠ABE=∠DBC

在△ABE与△DBC中

AB=DB

∠ABE=∠DBC

BE=BC

∴△ABE≌△DBC(SAS)

∴∠2=∠1

在△BEF与△BCG中

∠EBF=∠CBG

BE=BC

∠2=∠1

∴△BEF≌△BCG(ASA)

∴BF=BG(全等三角形对应边相等)例11.如图AB//CD,∠B=90º,E是BC的中点,DE平分∠ADC,求证:AE平分∠DABCDBAEF证明:作EF⊥AD,垂足为F∵DE平分∠ADCAB//CD,∴∠C=∠B又∵∠B=90º∴∠C=90º又∵EF⊥AD∴EF=CE又∵E是BC的中点∴EB=EC∴EF=EB∵∠B=90º∴EB⊥AB∴AE平分∠DAB∴BC⊥DC

例12.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。∵AB=AC(已知)AD=AD(公共边)∴Rt△ABD≌Rt△ACD(HL)∴BD=CD解:BD=CD∵∠ADB=∠ADC=90°做一做

1、如图,要识别△ABC≌△ADE,除公共角∠A外,把还需要的两个条件及其根据写在横线上。ABCED(1)

()(2)

()(3)

()(4)

()(5)

()(6)

()(7)

()SAS2、如图,D为BC中点,DF⊥AC,且DE=DF,∠B与∠C相等吗?为什么?ADCBFE3、如图,AB=AC,BD、CE是△ABC的角平分线,△ABD≌△CBE吗?为什么?BACDE4、如图,AB=AD,AC=AE,∠BAE=∠DAC,△ABC与△ADE全等吗?BACDE考考你,学得怎样?5、如图1,已知AC=BD,∠1=∠2,那么△ABC≌

,其判定根据是__________。6、如图2,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件___=___,7、

如右图,已知AC=BD,∠A=∠D

,请你添一个直接条件,___=

,使△AFC≌△DEB8、如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有()(A)1对(B)2对(C)3对(D)4对9、下列条件中,不能判定两个直角三角形全等的是()(A)一锐角和斜边对应相等(B)两条直角边对应相等(C)斜边和一直角边对应相等(D)两个锐角对应相等10、下列四组中一定是全等三角形的为()A.三内角分别对应相等的两三角形B、斜边相等的两直角三角形C、两边和其中一条边的对角对应相等的两个三角形D、三边对应相等的两个三角形答:证法错误。SAS定理应用错误。11.【99江西】已知,如图,BC=BD,∠C=∠D,求证:AC=AD.有一同学证法如下:

证:连结AB在⊿ABC和⊿ABD中

BC=BD∠C=∠D

AB=AB∴⊿ABC≌⊿ABD(SAS)∴AC=AD你认为这位同学的证法对吗?如果错误,错在哪里,应怎样证明?

12.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm。求:BE的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论