




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市第九中学2022年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,四棱锥P-ABCD中,底面是边长为1的菱形,∠ABC=60°,PA⊥底面ABCD,PA=1,则异面直线AB与PD所成角的余弦值为(
)
参考答案:A略2.以下结论正确的是A.一个程序的算法步骤是可逆的
B.一个算法是可以无止境地运算下去的C.完成一件事情的算法有且只有一种
D.设计算法要本着简单方便的原则参考答案:B略3.的导数为(
)A.
B.
C.
D.参考答案:D4.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2016项与5的差,即a2016﹣5=()A.2018×2014 B.2018×2013 C.1011×2015 D.1010×2012参考答案:C【考点】归纳推理.【分析】根据前面图形中,编号与图中石子的个数之间的关系,分析他们之间存在的关系,并进行归纳,用得到一般性规律,即可求得结论.【解答】解:由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n=1时,a1=2+3=×(2+3)×2;n=2时,a2=2+3+4=×(2+4)×3;…由此我们可以推断:an=2+3+…+(n+2)=[2+(n+2)]×(n+1)∴a2016﹣5=×[2+]×﹣5=1011×2015.故选C.5.给出以下四个命题:①若x2-3x+2=0,则x=1或x=2;②若-2≤x<3,则(x+2)(x-3)≤0;③若x=y=0,则x2+y2=0;④若x,y∈N*,x+y是奇数,则x,y中一个是奇数,一个是偶数,那么().A.①的逆命题为真
B.②的否命题为真C.③的逆否命题为假 D.④的逆命题为假参考答案:A6.若(ax2-)9的展开式中常数项为84,其中为常数,则其展开式中各项系数之和为(
)A.
1
B.512
C.-512
D.0参考答案:D7.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是(
)A.,则
B.,则C.,则
D.,则参考答案:B略8.已知两个实数a、b(a≠b)满足aea=beb,命题p:lna+a=lnb+b;命题q:(a+1)(b+1)<0.则下面命题是真命题的是(
) A.p∨(¬q) B.p∧(¬q) C.p∨q D.p∧q参考答案:C考点:复合命题的真假.专题:简易逻辑.分析:由已知aea=beb可联想构造函数y=xex,求导后由函数的单调性结合x<﹣1时y恒小于0可得a,b均小于0而且一个比﹣1大一个比﹣1小,由此可以得到选项.解答: 解:构造函数y=xex,则y′=ex+xex=(x+1)ex,∵ex>0,∴当x<﹣1时,y′<0,函数y=xex为减函数,当x>﹣1时,y′>0,函数y=xex为增函数,要使aea=beb,则a,b必须均小于0而且一个比﹣1大一个比﹣1小,∴命题p为假命题,命题q为真命题.故选:C.点评:本题考查命题的真假判断与应用,训练了函数构造法,考查了利用导数研究函数的单调性,是中档题.9.设,则(
)A.0.16
B.0.32
C.0.84
D.0.64参考答案:A10.设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是
()A.与具有正的线性相关关系
B.回归直线过样本点的中心)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)=(1﹣x)(x2+ax+b)的图象关于点(﹣2,0)对称,x1,x2分别是f(x)的极大值和极小值点,则x1﹣x2=.参考答案:2【考点】利用导数研究函数的极值.【分析】函数f(x)=(1﹣x)(x2+ax+b)的图象关于点(﹣2,0)对称,可得f″(﹣2)=0,f(﹣2)=0,可得a,b,进而得出极值点,即可得出.【解答】解:函数f(x)=(1﹣x)(x2+ax+b)=﹣x3+(1﹣a)x2+(a﹣b)x+b.f′(x)=﹣3x2+2(1﹣a)x+(a﹣b),f″(x)=﹣6x+2(1﹣a),∵函数f(x)=(1﹣x)(x2+ax+b)的图象关于点(﹣2,0)对称,∴f″(﹣2)=0,f(﹣2)=0,∴12+2﹣2a=0,3(4﹣2a+b)=0,解得a=7,b=10.∴f(x)=﹣x3﹣6x2﹣3x+10.令f′(x)=﹣3x2﹣12x﹣3=﹣3(x2+4x+1)=0,解得,令f′(x)>0,解得,此时函数f(x)单调递增;令f′(x)<0,解得x,或x,此时函数f(x)单调递减.∴f(x)的极大值和极小值点分别为=x1,=x2.∴x1﹣x2=2.故答案为:2.12.命题“.”的否定是______________.参考答案:略13.已知关于的方程在上恒有实数根,则实数的取值范围是
.参考答案:14.椭圆+y2=1上一点P,M(1,0),则|PM|的最大值为
.参考答案:1+
【分析】设出椭圆上任意一点的参数坐标,由两点间的距离公式写出|PM|,利用配方法通过三角函数的有界性求其最大值.【解答】解:∵椭圆+y2=1,设P点坐标是(cost,sint)则|PM|====|cost﹣|∈[,1+].∴当cost=﹣1时,|PM|取得最大值为:1.故答案为:1+.15.如图,是一座铁塔,线段和塔底在同一水平地面上,在两点测得塔顶的仰角分别为和,又测得则此铁塔的高度为
.参考答案:1216.程序框图如图所示,将输出的的值依次记为,,,那么数列的通项公式为
参考答案:.
()17.在△ABC中,三个角A,B,C所对的边分别为a,b,c.若角A,B,C成等差数列,且边a,b,c成等比数列,则△ABC的形状为__________.参考答案:等边三角形角,,成等差数列,则,,解得,边,,成等比数列,则,余弦定理可知,故为等边三角形.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
参考答案:解:(1)由图一可得市场售价与时间的函数关系为
由图二可得种植成本与时间的函数关系为g(t)=(t-150)2+100,0≤t≤300.
(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),即
当0≤t≤200时,配方整理得h(t)=-(t-50)2+100,所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t≤300时,配方整理得:h(t)=-(t-350)2+100,所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.
综上:由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大19.已知数列{an}的首项a1=1,?n∈N+,an+1=.(1)证明:数列{}是等差数列;(2)求数列{}的前n项和Sn.参考答案:【考点】数列的求和;等差关系的确定.【专题】综合题;转化思想;转化法;等差数列与等比数列.【分析】(1)由数列{an}的首项a1=1,?n∈N+,an+1=.两边取倒数可得:+,即可证明.(2)由(1)可得:=,=.利用“裂项求和”即可得出.【解答】(1)证明:∵数列{an}的首项a1=1,?n∈N+,an+1=.两边取倒数可得:+,∴﹣=,∴数列{}是等差数列,首项为1,公差为.(2)解:由(1)可得:=1+=,可得an=.∴=.∴数列{}的前n项和Sn=2+…+=2=.【点评】本题考查了递推关系的应用、“裂项求和”,考查了变形能力、推理能力与计算能力,属于中档题.20.10分)已知函数f(x)=x3-2ax2+3x(x∈R).(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.参考答案:(1)设切线的斜率为k,则k==2x2-4x+3=2(x-1)2+1,当x=1时,kmin=1.又f(1)=,所以所求切线的方程为y-=x-1,即3x-3y+2=0.
(2)=2x2-4ax+3,要使y=f(x)为单调递增函数,必须满足>0,即对任意的x∈(0,+∞),恒有>0,=2x2-4ax+3>0,∴a<=+,而+≥,当且仅当x=时,等号成立.所以a<,所求满足条件的a值为1
21.已知函数f(x)=(m,n为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线方程是y=;(Ⅰ)求m,n的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=f′(x)?(其中f'(x)为f(x)的导函数),证明:对任意x>0,g(x)<1+e﹣2.参考答案:【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,利用函数的切线方程的斜率,与切线方程即可求m,n的值;(Ⅱ)利用导函数直接求出导函数的大于0以及小于0的x的范围即可求f(x)的单调区间;(Ⅲ)化简g(x)=f′(x)?(其中f'(x)为f(x)的导函数),通过构造新函数p(x)=1﹣x﹣xlnx,x∈(0,+∞),通过导数求出p(x)的最大值为p(e﹣2),得到1﹣x﹣xlnx≤1+e﹣2.再构造函数q(x)=x﹣ln(1+x),利用对数的单调性推出q(x)>q(0)=0,然后证明:对任意x>0,g(x)<1+e﹣2.【解答】解:(Ⅰ)由得(x>0).由已知得,解得m=n.又,即n=2,∴m=n=2.…(Ⅱ)由(Ⅰ)得,令p(x)=1﹣x﹣xlnx,x∈(0,+∞),当x∈(0,1)时,p(x)>0;当x∈(1,+∞)时,p(x)<0,又ex>0,所以当x∈(0,1)时,f'(x)>0;
当x∈(1,+∞)时,f'(x)<0,∴f(x)的单调增区间是(0,1),f(x)的单调减区间是(1,+∞).…(8分)(Ⅲ)证明:由已知有,x∈(0,+∞),于是对任意x>0,g(x)<1+e﹣2等价于,由(Ⅱ)知p(x)=1﹣x﹣xlnx,x∈(0,+∞),∴p'(x)=﹣lnx﹣2=﹣(lnx﹣lne﹣2),x∈(0,+∞).易得当x∈(0,e﹣2)时,p'(x)>0,即p(x)单调递增;当x∈(e﹣2,+∞)时,p'(x)<0,即p(x)单调递减.所以p(x)的最大值为p(e﹣2)=1+e﹣2,故1﹣x﹣xlnx≤1+e﹣2.设q(x)=x﹣ln(1+x),则,因此,当x∈(0,+∞)时,q(x)单调递增,q(x)>q(0)=0.故当x∈(0,+∞)时,q(x)=x﹣ln(1+x)>0,即.∴1﹣x﹣xlnx≤1+e﹣2<.∴对任意x>0,g(x)<1+e﹣2.…(14分)【点评】本题考查函数的单调性,函数的最值的应用,构造法以及函数的导数的多次应用,题目的难度大,不易理解.22.写出用二分法求方程x3-x-1=0在区间[1,1.5]上的一个解的算法(误差不超过0.001),并画出相应的程序框图及程序.参考答案:用二分法求方程的近似值一般取区间[a,b]具有以下特征:f(a)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基建专业知识试题及答案
- 文书专业面试题及答案
- 商业用房房屋租赁合同
- 老年护理学题库及答案解析
- 社区护理学题库简答题及答案解析
- 化工厂仓管安全培训试题及答案解析
- 江苏南通安全员C2考试题库及答案解析
- 2025年汽车驾驶员(技师)复审考试及考试题库含答案参考
- 罪犯知识竞赛题及答案
- 雕塑专业模拟试题及答案
- 高速通信管道迁改施工方案
- USP 62-非无菌产品的微生物检验特定微生物的试验CN
- 幕墙UHPC施工专项方案 (评审版)
- 2025-2030年地域风味酱板鸭行业跨境出海战略研究报告
- 2025年一季度全院难免压疮风险评估上报总结分析(二篇)
- 2025-2030年中国微晶玻璃面板行业规模分析及投资前景规划研究报告
- 小学生班级安全小卫士
- 2025年江苏南京市国企集团招聘笔试参考题库含答案解析
- GB/T 33761-2024绿色产品评价通则
- 三角函数性质与解三角形(解答题10种考法)
- 大学生反诈宣传课件
评论
0/150
提交评论