动物源抗菌肽的研究现状和展望_第1页
动物源抗菌肽的研究现状和展望_第2页
动物源抗菌肽的研究现状和展望_第3页
动物源抗菌肽的研究现状和展望_第4页
动物源抗菌肽的研究现状和展望_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

..动物源抗菌肽的研究现状和展望汪以真〔XX大学饲料科学研究所,生物饲料安全与污染防控国家工程实验室,动物分子营养学教育部重点实验室,动物营养与饲料农业部重点开放实验室XX310058摘要:动物源抗菌肽是机体先天免疫系统的重要效应分子,因其具有广谱高效抗菌活性、细胞选择性及不易产生耐药性等特点,一直被人们认为是抗生素的理想替代品。此外,由于动物体自身分泌的抗菌肽远未达到抑制细菌所需浓度,因此其生物学功能不仅局限于抗菌活性。大量研究表明,抗菌肽不仅具有抗细菌、抗病毒、抗真菌、抗肿瘤等效果,在体内还表现出抗炎症反应、招募免疫细胞、促进上皮损伤修复、促进细胞吞噬细菌等重要作用。然而抗菌肽在一些方面的研究尚不透彻或存在争议,如抗菌肽是否存在耐药性以及通过重组表达技术生产的抗菌肽是否能安全有效的应用。关于抗菌肽的一些生物学功能与分子机制还有待系统深入的研究,如抗菌肽的构效关系、抗菌肽对益生菌的影响、抗菌肽与抗生素的互作效应、抗菌肽的稳定性及其吸收与代谢情况、营养物质调控内源抗菌肽的表达等。因此本文旨在从动物源抗菌肽的生物学功能、作用机制、稳定性与吸收、表达规律与营养调控、分子改良以及重组表达6大方面进行综述,为研发新型、高效、环保型抗生素替代品提供重要信息和策略。关键词:抗菌肽;生物学功能;稳定性;表达规律;分子改良;重组表达中图分类号:S816.7抗菌肽,又名宿主防御肽,是机体抵抗外来致病菌侵袭的重要屏障。成熟抗菌肽一般包含12~100个氨基酸残基,由于其带正电荷、呈两亲性的分子结构,使得其便于与带负电荷的微生物膜或其他细胞靶点相互作用ADDINEN.CITE<EndNote><Cite><Author>Yeaman</Author><Year>2007</Year><RecNum>63</RecNum><DisplayText>[1]</DisplayText><record><rec-number>63</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">63</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yeaman,M.R.</author><author>Yount,N.Y.</author></authors></contributors><auth-address>DivisionofInfectiousDiseases,LAC-HarbourUCLAMedicalCenter,Torrance,California90509,USA.RY</auth-address><titles><title>Unifyingthemesinhostdefenceeffectorpolypeptides</title><secondary-title>NatRevMicrobiol</secondary-title><alt-title>Naturereviews.Microbiology</alt-title></titles><pages>727-40</pages><volume>5</volume><number>9</number><keywords><keyword>Adaptation,Physiological/immunology</keyword><keyword>Animals</keyword><keyword>Anti-InfectiveAgents/immunology/metabolism</keyword><keyword>AntimicrobialCationicPeptides/genetics/immunology/metabolism</keyword><keyword>BacterialInfections/immunology/metabolism</keyword><keyword>*Evolution,Molecular</keyword><keyword>Humans</keyword><keyword>Models,Biological</keyword><keyword>Peptides/genetics/*immunology/*metabolism</keyword></keywords><dates><year>2007</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>1740-1534<Electronic> 1740-1526<Linking></isbn><accession-num>17703227</accession-num><urls><related-urls><url>:///pubmed/17703227</url></related-urls></urls><electronic-resource-num>10.1038/nrmicro1744</electronic-resource-num></record></Cite></EndNote>[\o"Yeaman,2007#63"1]。人们一直认为抗菌肽具有广谱抗菌、不易产生耐药性、无残留等优点,然而随着对抗菌肽研究的不断深入,人们发现它并不是"万能的",某些细菌仍然能对抗菌肽产生耐药性,而且某些抗菌肽对动物体内的益生菌也有一定的杀伤作用。另外,外源抗菌肽的吸收、在动物体内的稳定性以及与抗生素相互影响等都不甚明了。鉴于此,本文从生物学功能与作用机制、稳定性与吸收、表达规律与营养调控、分子改良以及重组表达6个方面对动物源抗菌肽的研究现状作一系统阐述。抗菌肽的生物学功能及作用机制抗菌肽的抗菌功能与机制抗菌肽可以通过破坏细菌细胞膜作用,直接快速地杀伤细菌,且抗菌谱广。其自身独特的氨基酸组成、大小、电荷、空间构像和结构、两亲性、疏水性和膜的流动性及组成等使得其拥有独特的抗菌机制。尽管目前尚没有一个涵盖所有抗菌肽作用机制的理论,但大家公认的主要为膜作用机制和胞内作用机制ADDINEN.CITE<EndNote><Cite><Author>Li</Author><Year>2012</Year><RecNum>45</RecNum><DisplayText>[2]</DisplayText><record><rec-number>45</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">45</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Li,Y.M.</author><author>Xiang,Q.</author><author>Zhang,Q.H.</author><author>Huang,Y.D.</author><author>Su,Z.J.</author></authors></contributors><titles><title>Overviewontherecentstudyofantimicrobialpeptides:Origins,functions,relativemechanismsandapplication</title><secondary-title>Peptides</secondary-title></titles><pages>207-215</pages><volume>37</volume><number>2</number><dates><year>2012</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0196-9781</isbn><accession-num>WOS:00031004770000[\o"Li,2012#45"2]。细菌、真菌和真核生物细胞膜是大多数抗菌肽作用的首要靶点。抗菌肽通常定位在细菌膜的表面,当肽浓度达到一定阈值时破坏细菌细胞膜ADDINEN.CITE<EndNote><Cite><Author>Yount</Author><Year>2005</Year><RecNum>61</RecNum><DisplayText>[3]</DisplayText><record><rec-number>61</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">61</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yount,N.Y.</author><author>Yeaman,M.R.</author></authors></contributors><titles><title>Immunocontinuum:Perspectivesinantimicrobialpeptidemechanismsofactionandresistance</title><secondary-title>ProteinAndPeptideLetters</secondary-title></titles><pages>49-67</pages><volume>12</volume><number>1</number><dates><year>2005</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>0929-8665</isbn><accession-num>WOS:000226057400009</accession-num><urls><related-urls><url><GotoISI>://WOS:000226057400009</url></related-urls></urls><electronic-resource-num>10.2174/0929866053405959</electronic-resource-num></record></Cite></EndNote>[\o"Yount,2005#61"3]。而抗菌肽作用于微生物细胞膜包括非受体结合和受体结合2种机制。多数微生物外层带负电荷与阳离子抗菌肽非受体结合,有学者观察了10种不同动物源的抗菌肽对革兰氏阴性菌大肠杆菌〔如ATCC25922和革兰氏阳性菌〔如ATCC25923的作用机制,结果表明,大多数受试抗菌肽都能破坏细菌细胞膜,使其内容物泄漏,出现空泡化,此外还发现抗菌肽Protegrin-1<PG-1>具有胞内作用靶点,能够与细菌DNA结合,抑制蛋白质合成ADDINEN.CITEADDINEN.CITE.DATA[\o"Liu,2011#48"4-\o"Han,2011#51"5]。其他研究者也发现一些抗菌肽具有破膜机制和多种胞内作用机制,如Lv等ADDINEN.CITE<EndNote><Cite><Author>Lv</Author><Year>2014</Year><RecNum>43</RecNum><DisplayText>[6]</DisplayText><record><rec-number>43</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">43</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lv,Y.F.</author><author>Wang,J.J.</author><author>Gao,H.</author><author>Wang,Z.Y.</author><author>Dong,N.</author><author>Ma,Q.Q.</author><author>Shan,A.S.</author></authors></contributors><titles><title>AntimicrobialPropertiesandMembrane-ActiveMechanismofaPotentialalpha-HelicalAntimicrobialDerivedfromCathelicidinPMAP-36</title><secondary-title>PlosOne</secondary-title></titles><volume>9</volume><number>1</number><dates><year>2014</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>1932-6203</isbn><accession-num>WOS:000330244500238</accession-num><urls><related-urls><url><GotoISI>://WOS:000330244500238</url></related-urls></urls><custom7>e86364</custom7><electronic-resource-num>10.1371/journal.pone.0086364</electronic-resource-num></record></Cite></EndNote>[\o"Lv,2014#43"6]发现多种杂合肽透过细菌细胞膜,破坏膜完整性导致细菌死亡;Lan等ADDINEN.CITE<EndNote><Cite><Author>Lan</Author><Year>2010</Year><RecNum>54</RecNum><DisplayText>[7]</DisplayText><record><rec-number>54</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">54</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lan,Y.</author><author>Ye,Y.</author><author>Kozlowska,J.</author><author>Lam,J.K.W.</author><author>Drake,A.F.</author><author>Mason,A.J.</author></authors></contributors><titles><title>Structuralcontributionstotheintracellulartargetingstrategiesofantimicrobialpeptides</title><secondary-title>BiochimicaEtBiophysicaActa-Biomembranes</secondary-title></titles><pages>1934-1943</pages><volume>1798</volume><number>10</number><dates><year>2010</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0005-2736</isbn><accession-num>WOS:000281920400010</accession-num><urls><related-urls><url><GotoISI>://WOS:000281920400010</url></related-urls></urls><electronic-resource-num>10.1016/j.bbamem.2010.07.003</electronic-resource-num></record></Cite></EndNote>[\o"Lan,2010#54"7]发现抗菌肽Gloverin能抑制RNA合成;Hwang等ADDINEN.CITE<EndNote><Cite><Author>Hwang</Author><Year>2011</Year><RecNum>49</RecNum><DisplayText>[8,9]</DisplayText><record><rec-number>49</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">49</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hwang,J.</author><author>Kim,Y.</author></authors></contributors><titles><title>RNAinterferenceofanantimicrobialpeptide,gloverin,ofthebeetarmyworm,Spodopteraexigua,enhancessusceptibilitytoBacillusthuringiensis</title><secondary-title>JournalOfInvertebratePathology</secondary-title></titles><pages>194-200</pages><volume>108</volume><number>3</number><dates><year>2011</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0022-2011</isbn><accession-num>WOS:000296222900007</accession-num><urls><related-urls><url><GotoISI>://WOS:000296222900007</url></related-urls></urls><electronic-resource-num>10.1016/j.jip.2011.09.003</electronic-resource-num></record></Cite><Cite><Author>DeSmet</Author><Year>2005</Year><RecNum>59</RecNum><record><rec-number>59</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">59</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>DeSmet,K.</author><author>Contreras,R.</author></authors></contributors><titles><title>Humanantimicrobialpeptides:defensins,cathelicidinsandhistatins</title><secondary-title>BiotechnologyLetters</secondary-title></titles><pages>1337-1347</pages><volume>27</volume><number>18</number><dates><year>2005</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0141-5492</isbn><accession-num>WOS:000232968000001</accession-num><urls><related-urls><url><GotoISI>://WOS:000232968000001</url></related-urls></urls><electronic-resource-num>10.1007/s10529-005-0936-5</electronic-resource-num></record></Cite></EndNote>[\o"Hwang,2011#49"8]、DeSmet等ADDINEN.CITE<EndNote><Cite><Author>Hwang</Author><Year>2011</Year><RecNum>49</RecNum><DisplayText>[8,9]</DisplayText><record><rec-number>49</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">49</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hwang,J.</author><author>Kim,Y.</author></authors></contributors><titles><title>RNAinterferenceofanantimicrobialpeptide,gloverin,ofthebeetarmyworm,Spodopteraexigua,enhancessusceptibilitytoBacillusthuringiensis</title><secondary-title>JournalOfInvertebratePathology</secondary-title></titles><pages>194-200</pages><volume>108</volume><number>3</number><dates><year>2011</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0022-2011</isbn><accession-num>WOS:000296222900007</accession-num><urls><related-urls><url><GotoISI>://WOS:000296222900007</url></related-urls></urls><electronic-resource-num>10.1016/j.jip.2011.09.003</electronic-resource-num></record></Cite><Cite><Author>DeSmet</Author><Year>2005</Year><RecNum>59</RecNum><record><rec-number>59</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">59</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>DeSmet,K.</author><author>Contreras,R.</author></authors></contributors><titles><title>Humanantimicrobialpeptides:defensins,cathelicidinsandhistatins</title><secondary-title>BiotechnologyLetters</secondary-title></titles><pages>1337-1347</pages><volume>27</volume><number>18</number><dates><year>2005</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0141-5492</isbn><accession-num>WOS:000232968000001</accession-num><urls><related-urls><url><GotoISI>://WOS:000232968000001</url></related-urls></urls><electronic-resource-num>10.1007/s10529-005-0936-5</electronic-resource-num></record></Cite></EndNote>[\o"DeSmet,2005#59"9]先后发现抗菌肽Indolicidin、PR39和Attacins能抑制蛋白质合成。最新研究表明,抗菌肽的杀菌机制远非如此。Chu等ADDINEN.CITE<EndNote><Cite><Author>Chu</Author><Year>2012</Year><RecNum>46</RecNum><DisplayText>[10]</DisplayText><record><rec-number>46</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">46</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chu,H.T.</author><author>Pazgier,M.</author><author>Jung,G.</author><author>Nuccio,S.P.</author><author>Castillo,P.A.</author><author>deJong,M.F.</author><author>Winter,M.G.</author><author>Winter,S.E.</author><author>Wehkamp,J.</author><author>Shen,B.</author><author>Salzman,N.H.</author><author>Underwood,M.A.</author><author>Tsolis,R.M.</author><author>Young,G.M.</author><author>Lu,W.Y.</author><author>Lehrer,R.I.</author><author>Baumler,A.J.</author><author>Bevins,C.L.</author></authors></contributors><titles><title>Humanalpha-Defensin6PromotesMucosalInnateImmunityThroughSelf-AssembledPeptideNanonets</title><secondary-title>Science</secondary-title></titles><pages>477-481</pages><volume>337</volume><number>6093</number><dates><year>2012</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>0036-8075</isbn><accession-num>WOS:000306802300046</accession-num><urls><related-urls><url><GotoISI>://WOS:000306802300046</url></related-urls></urls><electronic-resource-num>10.1126/science.1218831</electronic-resource-num></record></Cite></EndNote>[\o"Chu,2012#46"10]报道抗菌肽α-Defensin6可以结合到细菌表面,自我组装形成一些小纤维和纳米样纤维包裹在鼠伤寒沙门氏菌周围,减少细菌黏附到肠道黏膜进而保护机体。本课题组也发现猪源hepcidin能够使大肠杆菌K88发生聚团,形成网状结构包裹。1.2抗菌肽的免疫调节作用与机制抗菌肽在机体内的浓度低于2μg/mL,远小于其杀菌浓度,但却可以在生理环境下调节免疫细胞功能。越来越多的研究表明免疫调节活性是抗菌肽发挥的主要生物学功能ADDINEN.CITEADDINEN.CITE.DATA[\o"Nijnik,2009#64"11-\o"Afacan,2012#65"12]。抗菌肽的免疫调节功能主要包括:1调节机体炎症水平。抗菌肽发挥炎症调节功能依赖多种机制,如Niyonsaba等ADDINEN.CITEADDINEN.CITE.DATA[\o"Mookherjee,2006#151"13]研究表明,人抗菌肽LL-37能抑制核转录因子-B〔NF-B亚单位p65的移位,激活丝裂原活化蛋白激酶〔MAPK和磷脂酰肌醇-3-激酶〔PI3K信号通路选择性上调抑炎因子的表达;MookherjeeADDINEN.CITEADDINEN.CITE.DATA[\o"Mookherjee,2006#151"14]也发现LL-37通过与脂多糖〔LPS直接结合,从而抑制Toll样受体〔TLR4及下游信号通路的激活等ADDINEN.CITEADDINEN.CITE.DATA。同时LL-37可以降低LPS诱导的小鼠及人嗜中性粒细胞ADDINEN.CITEADDINEN.CITE.DATA[\o"Niyonsaba,2002#147"14]、树突状细胞ADDINEN.CITEADDINEN.CITE.DATA[\o"Kandler,2006#167"15]和B淋巴细胞ADDINEN.CITE<EndNote><Cite><Author>Nijnik</Author><Year>2009</Year><RecNum>64</RecNum><DisplayText>[11]</DisplayText><record><rec-number>64</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">64</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Nijnik,A.</author><author>Hancock,R.</author></authors></contributors><auth-address>DepartmentofMicrobiologyandImmunology,CentreforMicrobialDiseasesandImmunityResearch,UniversityofBritishColumbia,Vancouver,Canada.</auth-address><titles><title>Hostdefencepeptides:antimicrobialandimmunomodulatoryactivityandpotentialapplicationsfortacklingantibiotic-resistantinfections</title><secondary-title>EmergHealthThreatsJ</secondary-title><alt-title>Emerginghealththreatsjournal</alt-title></titles><pages>e1</pages><volume>2</volume><dates><year>2009</year></dates><isbn>1752-8550<Electronic> 1752-8550<Linking></isbn><accession-num>22460279</accession-num><urls><related-urls><url>:///pubmed/22460279</url></related-urls></urls><custom2>3167646</custom2><electronic-resource-num>10.3134/ehtj.09.001</electronic-resource-num></record></Cite></EndNote>[\o"Nijnik,2009#64"11]的促炎因子的异常高表达。2通过诱导或增加趋化因子的分泌间接发挥趋化作用。Niyonsaba等ADDINEN.CITEADDINEN.CITE.DATA[\o"Mookherjee,2006#151"13]研究发现,在低生理浓度下,抗菌肽能够诱发免疫细胞趋化因子的产生。如人防御素可通过诱导肥大细胞脱粒和激活来招募中性粒细胞,进一步刺激支气管上皮细胞中白细胞介素8〔IL-8的转录和分泌。在稍高生理浓度下,抗菌肽自身作为趋化因子,募集粒性白细胞到感染部位发挥先天和适应性免疫反应作用。如LL-37可以介导CXCR2受体和甲酰肽受体2〔FPR2增加钙离子流出,进而趋化外周血单核细胞和嗜中性粒细胞;Yang等ADDINEN.CITEADDINEN.CITE.DATA[\o"De,2000#198"16]和Zhang等ADDINEN.CITEADDINEN.CITE.DATA[\o"Zhang,2009#188"17]研究发现,LL-37同时通过激活FPR2诱导单核细胞的趋药性。相似的,人β-防御素2〔hBD-2、人β-防御素3〔hBD-3可以通过CC类趋化因子受体2〔CCR2趋化单核细胞[17]。3启动和调节特异性免疫。若先天性免疫不足以消除感染,抗菌肽则通过信号传递途径启动并扩大宿主的特异性免疫反应。Gracia等ADDINEN.CITEADDINEN.CITE.DATA[\o"Gracia,2011#200"18]研究结果表明,注射蛋白转导域〔PTd和抗菌肽HH2-CpG可以提高100倍免疫球蛋白G〔IgG的分泌水平,并提高免疫球蛋白亚型IgG2a和IgG1的抗体水平。4直接增强机体抗细菌感染能力。Chromek等ADDINEN.CITEADDINEN.CITE.DATA[\o"Chromek,2006#202"19]和Nizet等ADDINEN.CITEADDINEN.CITE.DATA[\o"Chromek,2006#202"20]研究表明,CRAMP基因敲除小鼠在链球菌A的感染下更易导致皮肤坏死,并且更容易引起泌尿系统的感染。5通过特异受体激活免疫细胞功能。Lande等ADDINEN.CITEADDINEN.CITE.DATA[\o"Lande,2007#203"21]和Vandamme等ADDINEN.CITEADDINEN.CITE.DATA[\o"Vandamme,2012#204"22]研究结果表明,LL-37与自身DNA形成复合体,进而通过TLR9信号通路激活浆细胞样DC细胞,引起干扰素γ〔IFN-γ的产生与自免疫型T细胞的激活。抗菌肽的屏障作用与机制动物肠道、泌尿道和呼吸道的上皮细胞均可表达抗菌肽,近年来诸多研究表明抗菌肽在动物黏膜和皮肤防御方面起重要作用。抗菌肽发挥的作用不仅是杀灭病原菌,还能通过增强上皮组织的屏障功能来提高机体对病原微生物的抵抗能力。如Otte等ADDINEN.CITE<EndNote><Cite><Author>Otte</Author><Year>2009</Year><RecNum>35</RecNum><DisplayText>[23]</DisplayText><record><rec-number>35</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">35</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Otte,J.M.</author><author>Zdebik,A.E.</author><author>Brand,S.</author><author>Chromik,A.M.</author><author>Strauss,S.</author><author>Schmitz,F.</author><author>Steinstraesser,L.</author><author>Schmidt,W.E.</author></authors></contributors><titles><title>EffectsofthecathelicidinLL-37onintestinalepithelialbarrierintegrity</title><secondary-title>RegulatoryPeptides</secondary-title></titles><pages>104-117</pages><volume>156</volume><number>1-3</number><dates><year>2009</year><pub-dates><date>Aug</date></pub-dates></dates><isbn>0167-0115</isbn><accession-num>WOS:000268087900016</accession-num><urls><related-urls><url><GotoISI>://WOS:000268087900016</url></related-urls></urls><electronic-resource-num>10.1016/j.regpep.2009.03.009</electronic-resource-num></record></Cite></EndNote>[\o"Otte,2009#35"23]发现LL-37能够诱导血管内皮生长因子和角质形成细胞生长因子等多种细胞生长因子表达,刺激肠上皮细胞生长,保证肠上皮组织屏障的完整性,还能够通过与纤维状肌动蛋白发生作用使得肺泡上皮细胞硬度增加,从而增强机体对铜绿假单孢菌入侵的防御能力;肠上皮细胞间紧密连接可以调节肠黏膜屏障通透性和维持肠上皮细胞紧密性,是肠道黏膜屏障中至关重要的结构,而近年来有研究表明抗菌肽可以调控紧密连接蛋白的表达,从而影响肠道黏膜屏障的通透性。如人β-防御素1〔hBD-1和hBD-3可以提高表皮角质细胞紧密连接蛋白表达量,降低细胞通透性ADDINEN.CITE<EndNote><Cite><Author>Kiatsurayanon</Author><Year>2014</Year><RecNum>66</RecNum><DisplayText>[24]</DisplayText><record><rec-number>66</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">66</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kiatsurayanon,C.</author><author>Niyonsaba,F.</author><author>Smithrithee,R.</author><author>Akiyama,T.</author><author>Ushio,H.</author><author>Hara,M.</author><author>Okumura,K.</author><author>Ikeda,S.</author><author>Ogawa,H.</author></authors></contributors><auth-address>1]Atopy<Allergy>ResearchCenter,JuntendoUniversityGraduateSchoolofMedicine,Tokyo,Japan[2]DepartmentofDermatology,JuntendoUniversityGraduateSchoolofMedicine,Tokyo,Japan. Atopy<Allergy>ResearchCenter,JuntendoUniversityGraduateSchoolofMedicine,Tokyo,Japan.</auth-address><titles><title>HostDefense<Antimicrobial>Peptide,Humanbeta-Defensin-3,ImprovestheFunctionoftheEpithelialTight-JunctionBarrierinHumanKeratinocytes</title><secondary-title>JInvestDermatol</secondary-title><alt-title>TheJournalofinvestigativedermatology</alt-title></titles><pages>2163-73</pages><volumbmed/24633129</url></related-urls></urls><electronic-resource-num>10.1038/jid.2014.143</electronic-resource-num></record></Cite></EndNote>[\o"Kiatsurayanon,2014#66"24];饲喂抗菌肽BFⅡ可以提高断奶仔猪肠道紧密连接蛋白occludin、claudin-1和ZO-1的表达量,保护小肠肠道黏膜的完整性ADDINEN.CITEADDINEN.CITE.DATA[\o"Tang,2013#143"25]。刘倚帆ADDINEN.CITE<EndNote><Cite><Author>刘倚帆</Author><Year>2012</Year><RecNum>135</RecNum><DisplayText>[26]</DisplayText><record><rec-number>135</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">135</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>刘倚帆</author></authors><tertiary-authors><author>汪以真,</author></tertiary-authors></contributors><titles><title>动物源抗菌肽的分子改良及其对猪肠道上皮屏障功能的保护作用研究</title></titles><keywords><keyword>抗菌肽</keyword><keyword>抗菌活性</keyword><keyword>杀菌机制</keyword><keyword>细胞毒性</keyword><keyword>杂合抗菌肽</keyword><keyword>肠道上皮屏障功能</keyword><keyword>紧密连接蛋白</keyword></keywords><dates><year>2012</year></dates><publisher>XX大学</publisher><work-type>博士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"刘倚帆,2012#135"26]发现蛇源Cathelicidin-BF〔C-BF可以通过MAPK信号通路提高猪空肠上皮细胞IPEC-J2紧密连接蛋白ZO-1、occuludin的表达量,保护机体肠道屏障结构的完整性。此外,注射富含脯氨酸精氨酸的39位氨基酸抗菌〔PR-39能显著缓解沙门氏菌侵染及葡聚糖硫酸钠〔DSS诱导造成的小鼠肠道屏障功能受损,维护肠道结构完整性,而某些抗菌肽对上皮细胞的作用正好相反,如蜂毒素可以在短时间内打开细胞间的紧密连接,使得细胞通透性突然增加ADDINEN.CITE<EndNote><Cite><Author>Maher</Author><Year>2007</Year><RecNum>37</RecNum><DisplayText>[27]</DisplayText><record><rec-number>37</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">37</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Maher,S.</author><author>Feighery,L.</author><author>Brayden,D.J.</author><author>McClean,S.</author></authors></contributors><titles><title>MelittinasanepithelialpermeabilityenhancerI:InvestigationofitsmechanismofactioninCaco-2monolayers</title><secondary-title>PharmaceuticalResearch</secondary-title></titles><pages>1336-1345</pages><volume>24</volume><number>7</number><dates><year>2007</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>0724-8741</isbn><accession-num>WOS:000247429700010</accession-num><urls><related-urls><url><GotoISI>://WOS:000247429700010</url></related-urls></urls><electronic-resource-num>10.1007/s11095-007-9288-2</electronic-resource-num></record></Cite></EndNote>[\o"Maher,2007#37"27]。抗菌肽与抗生素的互作效应一些抗菌肽与抗生素间存在互作效应。刘倚帆ADDINEN.CITE<EndNote><Cite><Author>刘倚帆</Author><Year>2012</Year><RecNum>135</RecNum><DisplayText>[26]</DisplayText><record><rec-number>135</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">135</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>刘倚帆</author></authors><tertiary-authors><author>汪以真,</author></tertiary-authors></contributors><titles><title>动物源抗菌肽的分子改良及其对猪肠道上皮屏障功能的保护作用研究</title></titles><keywords><keyword>抗菌肽</keyword><keyword>抗菌活性</keyword><keyword>杀菌机制</keyword><keyword>细胞毒性</keyword><keyword>杂合抗菌肽</keyword><keyword>肠道上皮屏障功能</keyword><keyword>紧密连接蛋白</keyword></keywords><dates><year>2012</year></dates><publisher>XX大学</publisher><work-type>博士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"刘倚帆,2012#135"26]研究了抗菌肽与抗生素对革兰氏阴性菌和革兰氏阳性菌的体外协同抗菌效果,结果表明,牛乳铁蛋白肽<LFcinB>、天蚕素A<CecropinA>与金霉素对革兰氏阴性菌及阳性菌均具有协同作用;PG-1和C-BF与金霉素和新霉素联用对大肠杆菌EPECO78:K80有协同作用。国内外研究学者也报道了多种抗菌肽与抗生素之间的互作效应。如Westerhoff等ADDINEN.CITE<EndNote><Cite><Author>Westerhoff</Author><Year>1995</Year><RecNum>144</RecNum><DisplayText>[28]</DisplayText><record><rec-number>144</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">144</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Westerhoff,H.V.</author><author>Zasloff,M.</author><author>Rosner,J.L.</author><author>Hendler,R.W.</author><author>DeWaal,A.</author><author>VazGomes,A.</author><author>Jongsma,P.M.</author><author>Riethorst,A.</author><author>Juretic,D.</author></authors></contributors><auth-address>DivisionofMolecularBiology,NetherlandsCancerInstitute/AvL.</auth-address><titles><title>FunctionalsynergismofthemagaininsPGLaandmagainin-2inEscherichiacoli,tumorcellsandliposomes</title><secondary-title>EurJBiochem</secondary-title><alt-title>Europeanjournalofbiochemistry/FEBS</alt-title></titles><pages>257-64</pages><volume>228</volume><number>2</number><keywords><keyword>AminoAcidSequence</keyword><keyword>Anti-BacterialAgents/*pharmacology</keyword><keyword>*AntimicrobialCationicPeptides</keyword><keyword>AntineoplasticAgents/*pharmacology</keyword><keyword>DrugSynergism</keyword><keyword>ElectronTransportComplexIV/drugeffects</keyword><keyword>Escherichiacoli/*drugeffects</keyword><keyword>Glucose/metabolism</keyword><keyword>Humans</keyword><keyword>Liposomes/*metabolism</keyword><keyword>Magainins</keyword><keyword>MembranePotentials/drugeffects</keyword><keyword>MolecularSequenceData</keyword><keyword>Peptides/*pharmacology</keyword><keyword>Pronase/pharmacology</keyword><keyword>TumorCells,C/pubmed/7705337</url></related-urls></urls></record></Cite></EndNote>[\o"Westerhoff,1995#144"28]研究表明,来源于非洲爪蟾的抗菌肽magainina-2和PGLa具有协同作用,Vorland等ADDINEN.CITE<EndNote><Cite><Author>Vorland</Author><Year>1999</Year><RecNum>145</RecNum><DisplayText>[29]</DisplayText><record><rec-number>145</rec-number><foreign-keys><keyapp="EN"db-id="zzrp9fe0o9txsledav75fxd7prazpt29e0tr">145</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Vorland,L.H.</author><author>Osbakk,S.A.</author><author>Perstolen,T.</author><author>Ulvatne,H.</author><author>Rekdal,O.</author><author>Svendsen,J.S.</author><author>Gutteberg,T.J.</author></authors></contributors><auth-address>DepartmentofMedicalMicrobiology,UniversityHospital,Tromso,Norway.</auth-address><titles><title>InterferenceoftheantimicrobialpeptidelactoferricinBwiththeactionofvariousantibioticsagainstEscherichiacoliandStaphylococcusaureus</title><secondary-title>ScandJInfectDis</secondary-title><alt-title>Scandinavianjournalofinfectiousdiseases</alt-title></titles><pages>173-7</pages><volume>31</volume><number>2</number><keywords><keyword>Animals</keyword><keyword>Anti-BacterialAgents/antagonists&inhibitors/*pharmacology</keyword><keyword>Cattle</keyword><keyword>DrugInteractions</keyword><keyword>DrugSynergism</keyword><keyword>Erythromycin/pharmacology</keyword><keyword>Escherichiacoli/*drugeffects</keyword><keyword>Gentamicins/antagonists&inhibitors/pharmacology</keyword><keyword>Lactoferrin/*analogs&derivatives/pharmacology</keyword><keyword>MicrobialSensitivityTests</keyword><keyword>PenicillinG/pharmacology</keyword><keyword>Staphylococcusaureus/*drugeffects</keyword><keyword>Vancomycin/antagonists&inhibitors/pharmacology</keyword></keywords><dates><year>1999</year></dates><isbn>0036-5548<Print> 0036-5548<Linking></isbn><accession-num>10447328</accession-num><urls><related-urls><url>:///pubmed/10447328</url></related-urls></urls></record></Cite></EndNote>[\o"Vorland,1999#145"29]发现红霉素和LFcinB联合使用对大肠杆菌具有协同抗菌作用。保育猪和断奶仔猪生长性能的试验也验证了抗菌肽与抗生素的互作效应ADDINEN.CITE<En

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论