版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularizationisthemostcommonlyusedmethodofofnamedfor.In,themethodisalsoknownasridgeregression.Itisrelatedtothe forproblems.ThestandardapproachtosolveanofgivenasAx=b,isknownasandseekstominimizetheAx一b2where•isthe.However,thematrixmaybeoryieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax一b2+lirxll2forsomesuitablychosenTikhonovmatrix,r.Inmanycases,thismatrixischosenasther=,,givingpreferencetosolutionswithsmallernorms.Inothercases,operators.,aoraweighted)maybeusedtoenforcesmoothnessiftheunderlyingvectorisbelievedtobemostlycontinuous.Thisregularizationimprovestheconditioningoftheproblem,thusenablinganumericalsolution.Anexplicitsolution,denotedby」,isgivenby:ATbATbTheeffectofregularizationmaybevariedviathescaleofmatrix r.ForraI,whena=Othisreducestotheunregularizedleastsquaressolutionprovidedthat(ATA)-1exists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylookartificial,andindeedthematrixrseemsratherarbitrary,theprocesscanbejustifiedfroma.Notethatforanill-posedproblemonemustnecessarilyintroducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethatweknowthatxisarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentisindependentwith^x.Ourdataisalsosubjecttoerrors,andwetaketheerrorsinbtobealso withzeromeanandstandarddeviation °”UndertheseassumptionstheTikhonov-regularizedsolutionisthesolutiongiventhedataandtheaprioridistributionof^,accordingto.TheTikhonovmatrixisthen r=a/forTikhonovfactora=°匕/°xIftheassumptionofisreplacedbyassumptionsofanduncorrelatednessof,andstillassumezeromean,thentheentailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsforxandthedataerror,onecanapplyatransformationofthevariablestoreducetothecaseabove.Equivalently,onecanseekanxtominimize
Ax-b2+x-xp02Qwherewehaveused||x112tostandfortheweightednormPBayesianinterpretationPistheinverse ofb,x0isthexTPx(cf.the).Intheofx,andQistheinversecovariancematrixofxxTPx(cf.the).Intheofx,andQistheThisgeneralizedproblemcanbesolvedexplicitlyusingtheformula0-Ax)00[]RegularizationinHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,andonecanformulateTikhonovregularizationintheoriginalinfinitedimensionalcontext.IntheabovewecaninterpretAasaon,andxandbaselementsithedomainandrangeof^.TheoperatorA*A+rtristhena boundedinvertibleoperator.RelationtosingularvaluedecompositionandWienerfilterWithr=a',thisleastsquaressolutioncanb(the.GiventhesingularvaluedecompositionofAA=UYVtwithsingularvalues°”theTikhonovregularizedsolutioncanbeexpressedas
x=VDUTbwhereDhasdiagonalvaluesDiib= ib2+a2iandiszeroelsewhere.ThisdemonstratestheeffectoftheTikhonovparameterontheoftheregularizedproblem.Forthegeneralizedcaseasimilarrepresentationcanbederivedusinga.Finally,itisrelatedtothe:uTbi=1ii=1biib2wheretheWienerweightsaref=iandQisthe ofA.ib2+a2iDeterminationoftheTikhonovfactorTheoptimalregularizationparameteraisusuallyunknownandofteninpracticalproblemsisdeterminedbyanadhocmethod.ApossibleapproachreliesontheBayesianinterpretationdescribedabove.Otherapproachesincludethe,,,vedthattheoptimalparameter,inthesenseofminimizes:RSSG= RSSG= T2XGtX+;21)1XTwhereRSSisthe andTistheeffectivenumber.UsingthepreviousSVDdecomposition,wecansimplifytheaboveexpression:
andRSS=F另Cb12+andRSS=F另Cb12+工RSS二RSS0a2Cb)G2+a2iii=1iCb)Eg2… ig2+a2i=1 iEa2± g2+a2i=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofanintroduces(whenalluncertaintiesareGaussian)acovariancematrixCMrepresentingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrixCDrepresentingtheuncertaintieson':-:':-:''[.Jandwhenthesetwomatricesarediagonalandisotropic,equationsabove,withHistoryTikhonovregularizationhasbeeninventedindependentlyinmanydifferentcontexts.ItbecamewidelyknownfromitsapplicationtointegralequationsfromtheworkofandD.L.Phillips.SomeauthorsusethetermTikhonov-Phillipsregularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,whotookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa-filter.FollowingHoerl,itisknowninthestatisticalliteratureasridgeregression.[]References(1943)."O6ycTO访TUBOCTuo6paTHbix3agaq[Onthestabilityofinverseproblems]".39(5):195-198.Tychonoff,A.N.(1963)."OpemeHuuHeKoppeKTHonocTaB“eHHbix3agaquMeTogeperyn刃pu3aquu[Solutionofincorrectlyformulatedproblemsandtheregularizationmethod]".DokladyAkademiiNaukSSSR151:501-504..TranslatedinSovietMathematics4:1035-1038.Tychonoff,A.N.;V.Y.Arsenin(1977).SolutionofIll-posedProblems.Washington:Winston&Sons..Hansen,.,1998,Rank-deficientandDiscreteill-posedproblems,SIAMHoerlAE,1962,Applicationofridgeanalysistoregressionproblems,ChemicalEngineeringProgress,58,54-59.FosterM,1961,AnapplicationoftheWiener-Kolmogorovsmoothingtheorytomatrixinversion,J.SIAM,9,387-392PhillipsDL,1962,At
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年闽侯县昙石山中学第一期临聘教师招聘备考题库及参考答案详解1套
- 2025年中职历史学(中国古代史纲要)试题及答案
- 2025年中职智慧健康养老服务(养老常识基础)试题及答案
- 2026年仓储管理(货物防护)试题及答案
- 2025年大学第二学年(精密仪器制造)技术应用阶段测试题及答案
- 2025年高职(电子信息工程技术)单片机原理及应用专项测试试题及答案
- 2025年大学生态工程(生态工程)试题及答案
- 2025年中职(会计电算化)电子报税综合技能测试试题及答案
- 2025年中职(会计信息化)财务软件操作试题及答案
- 2025年大学农业机械化及其自动化(农机智能化技术)试题及答案
- 2025年辽铁单招考试题目及答案
- 医疗行业数据安全事件典型案例分析
- 2026年生物医药创新金融项目商业计划书
- 湖南名校联考联合体2026届高三年级1月联考化学试卷+答案
- 山东省潍坊市2024-2025学年二年级上学期期末数学试题
- 伤寒论条文(全398条)
- 资料3b SIG康美包无菌灌装流程及特征分段介绍
- 钳工技能训练(第4版)PPT完整全套教学课件
- 电力工程课程设计-某机床厂变电所设计
- Unit 2 Reading and Thinking教学课件(英语选择性必修第一册人教版)
- 儿童常用补液
评论
0/150
提交评论