




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB的值是()A. B. C. D.2.抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示.下列叙述中:①;②关于的方程的两个根是;③;④;⑤当时,随增大而增大.正确的个数是()A.4 B.3 C.2 D.13.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=4.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.已知反比例函数的图象过点则该反比例函数的图象位于()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限6.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是()A. B.C. D.7.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40° B.80° C.100° D.120°8.已知Rt△ABC,∠ACB=90º,BC=10,AC=20,点D为斜边中点,连接CD,将△BCD沿CD翻折得△B’CD,B’D交AC于点E,则的值为()A. B. C. D.9.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴10.二次函数的图象如图所示,下列说法中错误的是(
)A.函数的对称轴是直线x=1B.当x<2时,y随x的增大而减小C.函数的开口方向向上D.函数图象与y轴的交点坐标是(0,-3)二、填空题(每小题3分,共24分)11.抛物线的顶点坐标为________.12.如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变长了_____m.13.已知中,,交于,且,,,,则的长度为________.14.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是_____.15.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.16.一元二次方程x2﹣x=0的根是_____.17.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到18.抛物线y=(x﹣1)2+3的对称轴是直线_____.三、解答题(共66分)19.(10分)在锐角三角形中,已知,,的面积为,求的余弦值.20.(6分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.21.(6分)2018年12月1日,贵阳地铁一号线正式开通,标志着贵阳中心城区正式步入地铁时代,为市民的出行带来了便捷,如图是贵阳地铁一号线路图(部分),菁菁与琪琪随机从这几个站购票出发.(1)菁菁正好选择沙冲路站出发的概率为(2)用列表或画树状图的方法,求菁菁与琪琪出发的站恰好相邻的概率.22.(8分)已知一个二次函数的图象经过点、和三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.23.(8分)解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)24.(8分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.25.(10分)如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.(1)求证:.(2)求证:(3)若,求的值.26.(10分)解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:正弦的定义:正弦由题意得,故选D.考点:锐角三角函数的定义点评:本题属于基础应用题,只需学生熟练掌握正弦的定义,即可完成.2、B【分析】由抛物线的对称轴是,可知系数之间的关系,由题意,与轴的一个交点坐标为,根据抛物线的对称性,求得抛物线与轴的一个交点坐标为,从而可判断抛物线与轴有两个不同的交点,进而可转化求一元二次方程根的判别式,当时,代入解析式,可求得函数值,即可判断其的值是正数或负数.【详解】抛物线的对称轴是;③正确,与轴的一个交点坐标为抛物线与与轴的另一个交点坐标为关于的方程的两个根是;②正确,当x=1时,y=;④正确抛物线与轴有两个不同的交点,则①错误;当时,随增大而减小当时,随增大而增大,⑤错误;②③④正确,①⑤错误故选:B.【点睛】本题考查二次函数图象的基本性质:对称性、增减性、函数值的特殊性、二次函数与一元二次方程的综合运用,是常见考点,难度适中,熟练掌握二次函数图象基本性质是解题关键.3、D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.4、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数(k≠0)的图象经过点P(2,-3),
∴k=2×(-3)=-6<0,
∴该反比例函数经过第二、四象限.
故选:C.【点睛】本题考查了反比例函数的性质.反比例函数(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.6、D【解析】根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.【详解】∵点,点,点为弦的中点,∴,,∴,又满足等式:,∴,故选D.【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.7、C【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,
∴∠C+∠A=180°,
∵∠A=80°,
∴∠C=100°,
故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.8、A【分析】如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,由勾股定理可求AB的长,由锐角三角函数可求BH,CH,DH的长,由折叠的性质可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用锐角三角函数可求EF=,由面积关系可求解.【详解】解:如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵点D为斜边中点,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵将△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴设DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故选:A.【点睛】本题考查了翻折变换,直角三角形的性质,锐角三角函数的性质,勾股定理等知识,添加恰当辅助线是本题的关键.9、D【解析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A、在同圆或等圆中,长度相等的两条弧是等弧;B、平分弦(不是直径)的直径垂直于弦;C、在同圆或等圆中,相等的圆心角所对的弧相等;D、经过圆心的每一条直线都是圆的对称轴;故选D.点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.10、B【解析】利用二次函数的解析式与图象,判定开口方向,求得对称轴,与y轴的交点坐标,进一步利用二次函数的性质判定增减性即可.【详解】解:∵y=x2-2x-3=(x-1)2-4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,令x=0,得出y=-3,∴函数图象与y轴的交点坐标是(0,-3).因此错误的是B.故选:B.【点睛】本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键二、填空题(每小题3分,共24分)11、(-1,0)【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.【详解】解:∵抛物线,
∴顶点坐标为:(-1,0),
故答案是:(-1,0).【点睛】本题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点,同学们应熟练掌握.12、1.【分析】根据由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,即、,据此求得DE、HG的值,从而得出答案.【详解】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴、,即、,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长变长1m.故答案为:1.【点睛】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.13、【分析】过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,则四边形DGBF是矩形,由矩形的性质得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-1.证明△FEB∽△DEA,根据相似三角形的对应边成比例可求出x的值,进而得到AD,DE的长.在Rt△ADE中,由勾股定理即可得出结论.【详解】如图,过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,∴四边形DGBF是矩形,∴BG=DF,DG=FB.∵∠BCD=45°,∴△BFC是等腰直角三角形.∵BC=,∴FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,∵AC=AB,∴,∴,解得:AD=16x-1.∵FB∥AD,∴△FEB∽△DEA,∴,∴,∴18x1-16x+1=0,解得:x=或x=.当x=时,7x-1<0,不合题意,舍去,∴x=,∴AD=16x-1=6,DE=9x=,∴AE=.故答案为:.【点睛】本题考查了矩形的判定与性质以及相似三角形的判定与性质.求出AD=16x-1是解答本题的关键.14、【分析】首先解不等式得x<1,然后找出这六个数中符合条件的个数,再利用概率公式求解.【详解】解:∵x+1<2∴x<1∴在﹣1,0,1,2,3,4这六个数中,满足不等式x+1<2的有﹣1、0这两个,∴满足不等式x+1<2的概率是,故答案为:.【点睛】本题考查求概率,熟练掌握概率公式是解题的关键.15、3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.16、x1=0,x2=1【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.17、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.18、x=1【解析】解:∵y=(x﹣1)2+3,∴其对称轴为x=1.故答案为x=1.三、解答题(共66分)19、【分析】由三角形面积和边长可求出对应边的高,再由勾股定理求出余弦所需要的边长即可解答.【详解】解:过点点作于点,∵的面积,∴,在中,由勾股定理得,所以【点睛】本题考查了解直角三角形,掌握余弦的定义(余弦=邻边:斜边)和用面积求高是解题的关键.20、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.21、(1);(2)【分析】(1)根据概率公式,即可求解;(2)记火车站为A,沙冲路为B,望城坡为C,新村为D,然后采用列表法列出所有可能的情况,找出满足条件的情况,即可得出其概率.【详解】(1)P(选择沙冲路站出发)=;(2)记火车站为A,沙冲路为B,望城坡为C,新村为D列表如下:由图可知共有16种等可能情况,满足条件的情况是6种P(菁菁与琪琪出发的站恰好相邻)=【点睛】此题主要考查概率的求解,熟练掌握,即可解题.22、(1);(2)对称轴是直线,顶点坐标是.【分析】(1)直接用待定系数法求出二次函数的解析式;(2)根据对称轴和顶点坐标的公式求解即可.【详解】(1)设二次函数解析式为,∵抛物线过点,∴,解得,∴.(2)由(1)可知:,∵a=1,b=-2,c=-3,∴对称轴是直线,=-4,顶点坐标是.【点睛】本题考查了用待定系数法求二次函数解析式的方法以及利用公式求二次函数图象的对称轴及顶点坐标.23、(1);(2)x=﹣5或x=1.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x;(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得:x=﹣5或x=1.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年心理测评与评估技术考核试题及答案
- 2025年心理学基础知识测试题及答案
- 2025年航空服务与管理知识测试卷及答案
- 2025年护理学专业实习考核试题及答案
- 2025年生命科学与医学伦理综合能力考试卷及答案
- 2025年中国邮政集团有限公司广西壮族自治区分公司校园招聘笔试模拟试题含答案详解
- 物资质量监督管理制度
- 物资采购付款管理制度
- 特殊学校宿舍管理制度
- 特殊岗位人员管理制度
- 2025年政治经济学考试题及答案回顾
- 政府采购评审专家考试真题库(带答案)
- 2025年高考志愿填报-12种选科组合专业对照表
- 《知识产权法学》一万字笔记
- 固体废物堆肥处理技术课件
- 脑卒中的诊断与治疗
- 中国古茶树资源状况白皮书2025
- 牙科技术入股合作协议书
- 2025甘肃省农垦集团限责任公司人才招聘524人易考易错模拟试题(共500题)试卷后附参考答案
- 温泉水项目可行性分析报告(模板参考范文)
- 2024年海关总署在京直属事业单位招聘笔试真题
评论
0/150
提交评论