版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NetworkingandInternetworking3.1Introduction3.2Typesofnetwork3.3Networkprinciples3.4Internetprotocols3.5SummaryDistributedsystemsuselocalareanetworks,wideareanetworksandinternetworksforcommunication.Theperformance,reliability,scalability,mobilityandqualityofservicecharacteristicsoftheunderlyingnetworksimpactthebehaviourofdistributedsystemsandhenceaffecttheirdesign.Changesinuserrequirementshaveresultedintheemergenceofwirelessnetworksandofhigh-performancenetworkswithqualityofserviceguarantees.2Theprinciplesonwhichcomputernetworksarebasedincludeprotocollayering,packetswitching,routinganddatastreaming.Internetworkingtechniquesenableheterogeneousnetworkstobeintegrated.TheInternetisthemajorexample;itsprotocolsarealmostuniversallyusedindistributedsystems.33.1IntroductionThenetworksusedindistributedsystemsarebuiltfromavarietyoftransmissionmedia,includingwire,cable,fibreandwirelesschannels;hardwaredevices,includingrouters,switches,bridges,hubs,repeatersandnetworkinterfaces;andsoftwarecomponents,includingprotocolstacks,communicationhandlersanddrivers.Theresultingfunctionalityandperformanceavailabletodistributedsystemandapplicationprogramsisaffectedbyallofthese.3.1IntroductionWeshallrefertothecollectionofhardwareandsoftwarecomponentsthatprovidethecommunicationfacilitiesforadistributedsystemasacommunicationsubsystem.Thecomputersandotherdevicesthatusethenetworkforcommunicationpurposesarereferredtoashosts.Thetermnodeisusedtorefertoanycomputerorswitchingdeviceattachedtoanetwork.3.1IntroductionTheInternetisasinglecommunicationsubsystemprovidingcommunicationbetweenallofthehoststhatareconnectedtoit.TheInternetisconstructedfrommanysubnets.Asubnetisaunitofrouting(deliveringdatafromonepartoftheInternettoanother);itisacollectionofnodesthatcanallbereachedonthesamephysicalnetwork.TheInternet’sinfrastructureincludesanarchitectureandhardwareandsoftwarecomponentsthateffectivelyintegratediversesubnetsintoasingledatacommunicationservice.3.1IntroductionThischapterisintendedtoprovideanintroductoryoverviewofcomputernetworkingwithreferencetothecommunicationrequirementsofdistributedsystems.Intheremainderofthissectionwediscussthecommunicationrequirementsofdistributedsystems.WegiveanoverviewofnetworktypesinSection3.2andanintroductiontonetworkingprinciplesinSection3.3.Section3.4dealsspecificallywiththeInternet.ThechapterconcludeswithdetailedcasestudiesontheEthernet,IEEE802.11(WiFi)andBluetoothnetworkingtechnologiesinSection.1NetworkingissuesfordistributedsystemsEarlycomputernetworksweredesignedtomeetafew,relativelysimpleapplicationrequirements.Networkapplicationssuchasfiletransfer,remotelogin,electronicmailandnewsgroupsweresupported.Thesubsequentdevelopmentofdistributedsystemswithsupportfordistributedapplicationprogramsaccessingsharedfilesandotherresourcessetahigherstandardofperformancetomeettheneedsofinteractiveapplications.3.1.1NetworkingissuesfordistributedsystemsMorerecently,followingthegrowthandcommercializationoftheInternetandtheemergenceofmanynewmodesofuse,morestringentrequirementsforreliability,scalability,mobility,securityandqualityofservicehaveemerged.Inthissection,wedefineanddescribethenatureofeachoftheserequirements.PerformanceThenetworkperformanceparametersthatareofprimaryinterestforourpurposesarethoseaffectingthespeedwithwhichindividualmessagescanbetransferredbetweentwointerconnectedcomputers.Thesearethelatencyandthepointto-pointdatatransferrate:LatencyDatatransferrateFollowingfromthesedefinitions,thetimerequiredforanetworktotransferamessagecontaininglengthbitsbetweentwocomputersis:Messagetransmissiontime=latency+length⁄datatransferrateTheaboveequationisvalidformessageswhoselengthdoesnotexceedamaximumthatisdeterminedbytheunderlyingnetworktechnology.Longermessageshavetobesegmentedandthetransmissiontimeisthesumofthetimesforthesegments.Thetotalsystembandwidthofanetworkisameasureofthroughput–thetotalvolumeoftrafficthatcanbetransferredacrossthenetworkinagiventime.Inmanylocalareanetworktechnologies,suchasEthernet,thefulltransmissioncapacityofthenetworkisusedforeverytransmissionandthesystembandwidthisthesameasthedatatransferrate.ScalabilityComputernetworksareanindispensablepartoftheinfrastructureofmodernsocieties.InFigure1.6weshowedthegrowthinthenumberofhostcomputersandwebserversconnectedtotheInternetovera12-yearperiodendingin2005.Thegrowthsincethenhasbeensorapidanddiversethatitisdifficulttofindrecentreliablestatistics.ThepotentialfuturesizeoftheInternetiscommensuratewiththepopulationoftheplanet.Itisrealistictoexpectittoincludeseveralbillionnodesandhundredsofmillionsofactivehosts.SecurityChapter11setsouttherequirementsandtechniquesforachievingsecurityindistributedsystems.Thefirstlevelofdefenceadoptedbymostorganizationsistoprotectitsnetworksandthecomputersattachedtothemwithafirewall.Afirewallcreatesaprotectionboundarybetweentheorganization’sintranetandtherestoftheInternet.Thepurposeofthefirewallistoprotecttheresourcesinallofthecomputersinsidetheorganizationfromaccessbyexternalusersorprocessesandtocontroltheuseofresourcesoutsidethefirewallbyusersinsidetheorganization.MobilityMobiledevicessuchaslaptopcomputersandInternet-capablemobilephonesaremovedfrequentlybetweenlocationsandreconnectedatconvenientnetworkconnectionpointsorevenusedwhileonthemove.Wirelessnetworksprovideconnectivitytosuchdevices,buttheaddressingandroutingschemesoftheInternetweredevelopedbeforetheadventofthesemobiledevicesandarenotwelladaptedtotheirneedforintermittentconnectiontomanydifferentsubnets.TheInternet’smechanismshavebeenadaptedandextendedtosupportmobility,buttheexpectedfuturegrowthintheuseofmobiledeviceswilldemandfurtherdevelopment.3.2TypesofnetworkHereweintroducethemaintypesofnetworkthatareusedtosupportdistributedsystems:personalareanetworks,localareanetworks,wideareanetworks,metropolitanareanetworksandthewirelessvariantsofthem.InternetworkssuchastheInternetareconstructedfromnetworksofallthesetypes.Figure3.1showstheperformancecharacteristicsofthevarioustypesofnetworkdiscussedbelow.Personalareanetworks(PANs)Localareanetworks(LANs)Wideareanetworks(WANs)Metropolitanareanetworks(MANs)Wirelesslocalareanetworks(WLANs)Wirelessmetropolitanareanetworks(WMANs)Wirelesswideareanetworks(WWANs)InternetworksNetworkerrors3.3Networkprinciples3.3.1Packettransmission3.3.2Datastreaming3.3.3Switchingschemes3.3.4Protocols3.3.5Routing3.3.6Congestioncontrol3.3.7Internetworking3.3.3SwitchingschemesBroadcastCircuitswitchingPacketswitchingFramerelay3.3.4ProtocolsThetermprotocolisusedtorefertoawell-knownsetofrulesandformatstobeusedforcommunicationbetweenprocessesinordertoperformagiventask.Thedefinitionofaprotocolhastwoimportantpartstoit:•aspecificationofthesequenceofmessagesthatmustbeexchanged;•aspecificationoftheformatofthedatainthemessages.3.3.5RoutingThedeliveryofpacketstotheirdestinationsinanetworksuchastheoneshowninFigure3.7isthecollectiveresponsibilityoftherouterslocatedatconnectionpoints.UnlessthesourceanddestinationhostsareonthesameLAN,thepackethastobetransmittedinaseriesofhops,passingthroughrouternodes.Thedeterminationofroutesforthetransmissionofpacketstotheirdestinationsistheresponsibilityofaroutingalgorithmimplementedbyaprograminthenetworklayerateachnode.
Arouterexchangesinformationaboutthenetworkwithitsneighbouringnodesbysendingasummaryofitsroutingtableusingarouterinformationprotocol(RIP).TheRIPactionsperformedatarouteraredescribedinformallyasfollows:1.Periodically,andwheneverthelocalroutingtablechanges,sendthetable(inasummaryform)toallaccessibleneighbours.Thatis,sendanRIPpacketcontainingacopyofthetableoneachnon-faultyoutgoinglink.2.Whenatableisreceivedfromaneighbouringrouter,ifthereceivedtableshowsaroutetoanewdestination,orabetter(lower-cost)routetoanexistingdestination,updatethelocaltablewiththenewroute.Ifthetablewasreceivedonlinknanditgivesadifferentcostthanthelocaltableforaroutethatbeginswithlinkn,replacethecostinthelocaltablewiththenewcost.Thisisdonebecausethenewtablewasreceivedfromarouterthatisclosertotherelevantdestinationandisthereforealwaysmoreauthoritativeforroutesthatpassthroughit.3.3.6CongestioncontrolThecapacityofanetworkislimitedbytheperformanceofitscommunicationlinksandswitchingnodes.Whentheloadatanyparticularlinkornodeapproachesitscapacity,queueswillbuildupathoststryingtosendpacketsandatintermediatenodesholdingpacketswhoseonwardtransmissionisblockedbyothertraffic.Iftheloadcontinuesatthesamehighlevel,thequeueswillcontinuetogrowuntiltheyreachthelimitofavailablebufferspace.Oncethisstateisreachedatanode,thenodehasnooptionbuttodropfurtherincomingpackets.Aswehavealreadynoted,theoccasionallossofpacketsatthenetworklevelisacceptableandcanberemediedbyretransmissioninitiatedathigherlevels.Butiftherateofpacketlossandretransmissionreachesasubstantiallevel,theeffectonthethroughputofthenetworkcanbedevastating.Insteadofallowingpacketstotravelthroughthenetworkuntiltheyreachovercongestednodes,wheretheywillhavetobedropped,itwouldbebettertoholdthematearliernodesuntilthecongestionisreduced.Thiswillresultinincreaseddelaysforpacketsbutwillnotsignificantlydegradethetotalthroughputofthenetwork.Congestioncontrolisthenamegiventotechniquesthataredesignedtoachievethis.3.3.7InternetworkingTherearemanynetworktechnologieswithdifferentnetwork-,link-andphysical-layerprotocols.Tobuildanintegratednetwork(aninternetwork)wemustintegratemanysubnets,eachofwhichisbasedononeofthesenetworktechnologies.Tomakethispossible,thefollowingareneeded:1.aunifiedinternetworkaddressingschemethatenablespacketstobeaddressedtoanyhostconnectedtoanysubnet;2.aprotocoldefiningtheformatofinternetworkpacketsandgivingrulesaccordingtowhichtheyarehandled;3.interconnectingcomponentsthatroutepacketstotheirdestinationsintermsofinternetworkaddresses,transmittingthepacketsusingsubnetswithavarietyofnetworktechnologies.3.4Internetprotocols3.4.1IPaddressing3.4.2TheIPprotocol3.4.3IProuting3.4.4IPversion63.4.5MobileIP3.4.6TCPandUDP3.4.7Domainnames3.4.8Firewalls3.4.1IPaddressingPerhapsthemostchallengingaspectofthedesignoftheInternetprotocolswastheconstructionofschemesfornamingandaddressinghostsandforroutingIPpacketstotheirdestinations.Theschemeusedforassigninghostaddressestonetworksandthecomputersconnectedtothemhadtosatisfythefollowingrequirements:•Itmustbeuniversal–anyhostmustbeabletosendpacketstoanyotherhostintheInternet.•Itmustbeefficientinitsuseoftheaddressspace–itisimpossibletopredicttheultimatesizeoftheInternetandthenumberofnetworkandhostaddresseslikelytoberequired.Theaddressspacemustbecarefullypartitionedtoensurethataddresseswillnotrunout.In1978–82,whenthespecificationsfortheTCP/IPprotocolswerebeingdeveloped,provisionfor232orapproximately4billionaddressablehosts(aboutthesameasthepopulationoftheworldatthattime)wasconsideredadequate.Thisjudgementhasprovedtobeshort-sighted,fortworeasons:–TherateofgrowthoftheInternethasfaroutstrippedallpredictions.–Theaddressspacehasbeenallocatedandusedmuchlessefficientlythanexpected.•Theaddressingschememustlenditselftothedevelopmentofaflexibleandefficientroutingscheme,buttheaddressesthemselvescannotcontainverymuchoftheinformationneededtorouteapackettoitsdestination.TodaytheoverwhelmingmajorityofInternettrafficcontinuestousetheIPversion4addressandpacketformatdefinedthreedecadesago.TheschemeassignsanIPaddresstoeachhostintheInternet–a32-bitnumericidentifiercontaininganetworkidentifier,whichuniquelyidentifiesoneofthesubnetworksintheInternet,andahostidentifier,whichuniquelyidentifiesthehost’sconnectiontothatnetwork.ItistheseaddressesthatareplacedinIPpacketsandusedtoroutethemtotheirdestinations.ThedesignadoptedfortheInternetaddressspaceisshowninFigure3.15.These32-bitInternetaddresses,containinganetworkidentifierandhostidentifier,areusuallywrittenasasequenceoffourdecimalnumbersseparatedbydots.Eachdecimalnumberrepresentsoneofthefourbytes,oroctets,oftheIPaddress.ThepermissiblevaluesforeachclassofnetworkaddressareshowninFigure.2TheIPprotocolTheIPprotocoltransmitsdatagramsfromonehosttoanother,ifnecessaryviaintermediaterouters.ThefullIPpacketformatisrathercomplex,butFigure3.17Figure3.17IPpacketlayoutIPaddressofsourceIPaddressofdestinationdataheaderupto64kilobytesshowsthemaincomponents.Thereareseveralheaderfields,notshowninthediagram,thatareusedbythetransmissionandroutingalgorithms.TheIPlayerputsIPdatagramsintonetworkpacketssuitablefortransmissionintheunderlyingnetwork(whichmight,forexample,beanEthernet).WhenanIPdatagramislongerthantheMTUoftheunderlyingnetwork,itisbrokenintosmallerpacketsatthesourceandreassembledatitsfinaldestination.Packetscanbefurtherbrokenuptosuittheunderlyingnetworksencounteredduringthejourneyfromsourcetodestination.(Eachpackethasafragmentidentifiertoenableout-of-orderfragmentstobecollected.)3.4.3IProutingTheIPlayerroutespacketsfromtheirsourcetotheirdestination.EachrouterintheInternetimplementsIP-layersoftwaretoprovidearoutingalgorithm.RIP-1,thefirstroutingalgorithmusedintheInternet,isaversionofthedistance-vectoralgorithmdescribedinSection3.3.5.RIP-2(describedinRFC1388[Malkin1993])wasdevelopedfromittoaccommodateseveraladditionalrequirements,includingclasslessinterdomainrouting,bettermulticastroutingandtheneedforauthenticationofRIPpacketstopreventattacksontherouters.DefaultroutesUptonow,ourdiscussionofroutingalgorithmshassuggestedthateveryroutermaintainsafullroutingtableshowingtheroutetoeverydestination(subnetordirectlyconnectedhost)intheInternet.AtthecurrentscaleoftheInternetthisisclearlyinfeasible(thenumberofdestinationsisprobablyalreadyinexcessof1millionandstillgrowingveryrapidly).Twopossiblesolutionstothisproblemcometomind,andbothhavebeenadoptedinanefforttoalleviatetheeffectsoftheInternet’sgrowth.ThefirstsolutionistoadoptsomeformoftopologicalgroupingofIPaddresses.Priorto1993,nothingcouldbeinferredfromanIPaddressaboutitslocation.In1993,aspartofthemovetosimplifyandeconomizeontheallocationofIPaddressesthatisdiscussedbelowunderCIDR,thedecisionwastakenthatforfutureallocations,thefollowingregionallocationswouldbeapplied:Addressesto55areinEuropeAddressesto55areinNorthAmericaAddressesto55areinCentralandSouthAmericaAddressesto55areinAsiaandthePacificBecausethesegeographicalregionsalsocorrespondtowell-definedtopologicalregionsintheInternetandjustafewgatewayroutersprovideaccesstoeachregion,thisenablesasubstantialsimplificationofroutingtablesforthoseaddressranges.Forexample,arouteroutsideEuropecanhaveasingletableentryfortherangeofaddressesto55thatsendsallIPpacketswithdestinationsinthatrangeonthesameroutetothenearestEuropeangatewayrouter.Butnotethatbeforethedateofthatdecision,IPaddresseswereallocatedlargelywithoutregardtotopologyorgeography.Manyofthoseaddressesarestillinuse,andthe1993decisiondoesnothingtoreducethescaleofroutingtableentriesforthoseaddresses.Thesecondsolutiontotheroutingtablesizeexplosionprobemissimplerandveryeffective.Itisbasedontheobservationthattheaccuracyofroutinginformationcanberelaxedformostroutersaslongassomekeyrouters(thoseclosesttothebackbonelinks)haverelativelycompleteroutingtables.Therelaxationtakestheformofadefaultdestinationentryinroutingtables.ThedefaultentryspecifiesaroutetobeusedforallIPpacketswhosedestinationsarenotincludedintheroutingtable.Toillustratethis,considerFigures3.7and3.8andsupposethattheroutingtablefornodeCisalteredtoshow:
ThusnodeCisignorantofnodesAandD.Itwillrouteallpacketsaddressedtothemvialink5toE.Whatistheconsequence?PacketsaddressedtoDwillreachtheirdestinationwithoutlossofefficiencyinrouting,butpacketsaddressedtoAwillmakeanextrahop,passingthroughEandBontheway.Ingeneral,theuseofdefaultroutingstradesroutingefficiencyfortablesize.Butinsomecases,especiallywherearouterisonaspur,sothatalloutwardmessagesmustpassthroughasinglepoint,thereisnolossofefficiency.ThedefaultroutingschemeisheavilyusedinInternetrouting;nosinglerouterholdsroutestoalldestinationsintheInternet.RoutingonalocalsubnetPacketsaddressedtohostsonthesamenetworkasthesenderaretransmittedtothedestinationhostinasinglehop,usingthehostidentifierpartoftheaddresstoobtaintheaddressofthedestinationhostontheunderlyingnetwork.TheIPlayersimplyusesARPtogetthenetworkaddressofthedestinationandthenusestheunderlyingnetworktotransmitthepackets.IftheIPlayerinthesendingcomputerdiscoversthatthedestinationisonadifferentnetwork,itmustsendthemessagetoalocalrouter.ItusesARPtogetthenetworkaddressofthegatewayorrouterandthenusestheunderlyingnetworktotransmitthepackettoit.GatewaysandroutersareconnectedtotwoormorenetworksandtheyhaveseveralInternetaddresses,oneforeachnetworktowhichtheyareattached.Classlessinterdomainrouting(CIDR)TheshortageofIPaddressesreferredtoinSection3.4.1ledtotheintroductionin1996ofthisschemeforallocatingaddressesandmanagingtheentriesinroutingtables.ThemainproblemwasascarcityofClassBaddresses–thoseforsubnetswithmorethan255hostsconnected.PlentyofClassCaddresseswereavailable.TheCIDRsolutionforthisproblemistoallocateabatchofcontiguousClassCaddressestoasubnetrequiringmorethan255addresses.TheCIDRschemealsomakesitpossibletosubdivideaClassBaddressspaceforallocationtomultiplesubnets.3.4.4IPversion6AmorepermanentsolutiontotheaddressinglimitationsofIPv4wasalsopursued,andthisledtothedevelopmentandadoptionofanewversionoftheIPprotocolwithsubstantiallylargeraddresses.TheIETFnoticedthepotentialproblemsarisingfromthe32-bitaddressesofIPv4asearlyas1990andinitiatedaprojecttodevelopanewversionoftheIPprotocol.IPv6wasadoptedbytheIETFin1994andastrategyformigrationtoitwasrecommended.Figure3.19showsthelayoutofIPv6headers.Wedonotproposetocovertheirconstructionindetailhere.Addressspace:IPv6addressesare128bits(16bytes)long.Thisprovidesforatrulyastronomicalnumberofaddressableentities:2128,orapproximately3u1038.Tanenbaumcalculatesthatthisissufficienttoprovide7u1023IPaddressespersquaremetreacrosstheentiresurfaceoftheEarth.TheIPv6addressspaceispartitioned.Wecannotdetailthepartitioninghere,buteventheminorpartitionsarefarlargerthanthetotalIPv4space.Routingspeed:ThecomplexityofthebasicIPv6headerandtheprocessingrequiredateachnodearereduced.Nochecksumisappliedtothepacketcontent(payload),andnofragmentationcanoccuronceapackethasbegunitsjourney.Theformerisconsideredacceptablebecauseerrorscanbedetectedathigherlevels(TCPdoesincludeacontentchecksum),andthelatterisachievedbysupportingamechanismfordeterminingthesmallestMTUbeforeapacketistransmitted.Multicastandanycast:BothIPv4andIPv6includesupportforthetransmissionofIPpacketstomultiplehostsusingasingleaddress(onethatisintherangereservedforthepurpose).TheIProutersarethenresponsibleforroutingthepackettoallofthehoststhathavesubscribedtothegroupidentifiedbytherelevantaddress.3.4.6TCPandUDPTCPandUDPprovidethecommunicationcapabilitiesoftheInternetinaformthatisusefulforapplicationprograms.Applicationdevelopersmightwishforothertypesoftransportservice,forexampletoprovidereal-timeguaranteesorsecurity,butsuchserviceswouldgenerallyrequiremoresupportinthenetworklayerthanIPv4provides.TCPandUDPcanbeviewedasafaithfulreflectionattheapplicationprogramminglevelofthecommunicationfacilitiesthatIPv4hastooffer.Chapter4describesthecharacteristicsofbothTCPandUDPfromthepointofviewofdistributedprogramdevelopers.Hereweshallbequitebrief,describingonlythefunctionalitythattheyaddtoIP.Useofports:Thefirstcharacteristictonoteisthat,whereasIPsupportscommunicationbetweenpairsofcomputers(identifiedbytheirIPaddresses),TCPandUDP,astransportprotocols,mustprovideprocess-to-processcommunication.Thisisaccomplishedbytheuseofports.Portnumbersareusedforaddressingmessagestoprocesseswithinaparticularcomputerandarevalidonlywithinthatcomputer.Aportnumberisa16-bitinteger.OnceanIPpackethasbeendeliveredtothedestinationhost,theTCP-orUDP-layersoftwaredispatchesittoaprocessviaaspecificportatthathost.UDPfeatures:
UDPisalmostatransport-levelreplicaofIP.AUDPdatagramisencapsulatedinsideanIPpacket.Ithasashortheaderthatincludesthesourceanddestinationportnumbers(thecorrespondinghostaddressesarepresentintheIPheader),alengthfieldandachecksum.UDPoffersnoguaranteeofdelivery.WehavealreadynotedthatIPpacketsmaybedroppedbecauseofcongestionornetworkerror.UDPaddsnoadditionalreliabilitymechanismsexceptthechecksum,whichisoptional.Ifthechecksumfieldisnon-zero,thereceivinghostcomputesacheckvaluefromthepacketcontentsandcomparesitwiththereceivedchecksum;packetsforwhichtheydonotmatcharedropped.TCPfeatures:TCPprovidesamuchmoresophisticatedtransportservice.Itprovidesreliabledeliveryofarbitrarilylongsequencesofbytesviastream-basedprogrammingabstraction.ThereliabilityguaranteeentailsthedeliverytothereceivingprocessofallofthedatapresentedtotheTCPsoftwarebythesendingprocess,inthesameorder.TCPisconnection-oriented.Beforeanydataistransferred,thesendingandreceivingprocessesmustcooperateintheestablishmentofabidirectionalcommunicationchannel.Theconnectionissimplyanend-to-endagreementtoperformreliabledatatransmission;intermediatenodessuchasroutershavenoknowledgeofTCPconnections,andtheIPpacketsthattransferthedatainaTCPtransmissiondonotnecessarilyallfollowthesameroute.TheTCPlayerincludesadditionalmechanisms(implementedoverIP)tomeetthereliabilityguarantees.Theseare:Sequencing:ATCPsendingprocessdividesthestreamintoasequenceofdatasegmentsandtransmitsthemasIPpackets.AsequencenumberisattachedtoeachTCPsegment.Itgivesthebytenumberwithinthestreamforthefirstbyteofthesegment.Thereceiverusesthesequencenumberstoorderthereceivedsegmentsbeforeplacingthemintheinputstreamatthereceivingprocess.Flowcontrol:Thesendertakescarenottooverwhelmthereceiverortheinterveningnodes.Thisisachievedbyasystemofsegmentacknowledgements.Wheneverareceiversuccessfullyreceivesasegment,itrecordsitssequencenumber.Fromtimetotimethereceiversendsanacknowledgementtothesender,givingthesequencenumberofthehighest-numberedsegmentinitsinputstreamtogetherwithawindowsize.Retransmission:Thesenderrecordsthesequencenumbersofthesegmentsthatitsends.Whenitreceivesanacknowledgementitnotesthatthesegmentsweresuccessfullyreceived,anditmaythendeletethemfromitsoutgoingbuffers.Ifanysegmentisnotacknowledgedwithinaspecifiedtimeout,thesenderretransmitsit.Buffering:Theincomingbufferatthereceiverisusedtobalancetheflowbetweenthesenderandthereceiver.Ifthereceivingprocessissuesreceiveoperationsmoreslowlythanthesenderissuessendoperations,thequantityofdatainthebufferwillgrow.Usuallyitisextractedfromthebufferbeforeitbecomesfull,butultimatelythebuffermayoverflow,andwhenthathappensincomingsegmentsaresimplydroppedwithoutrecordingtheirarrival.Theirarrivalisthereforenotacknowledgedandthesenderisobligedtoretransmitthem.Checksum:Eachsegmentcarriesachecksumcoveringtheheaderandthedatainthesegment.Ifareceivedsegmentdoesnotmatchitschecksum,thesegmentisdropped.3.4.8FirewallsAlmostallorganizationsneedInternetconnectivityinordertoprovideservicestotheircustomersandotherexternalusersandtoenabletheirinternaluserstoacces
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年哈尔滨医科大学附属第二医院公开招聘病房主任、副主任岗位15人备考笔试题库及答案解析
- 深度解析(2026)《GBT 26882.1-2024粮油储藏 粮情测控系统 第1部分:通则》
- 深度解析(2026)《GBT 26025-2010连续铸钢结晶器用铜模板》(2026年)深度解析
- 深度解析(2026)《GBT 25669.1-2010镗铣类数控机床用工具系统 第1部分:型号表示规则》(2026年)深度解析
- 2025山东聊城市属国有控股公司电商平台项目招聘100人备考笔试题库及答案解析
- 2025广东中山市民众锦标学校教师招聘参考考试试题及答案解析
- 2025河南开封职业学院招聘专职教师81人参考考试试题及答案解析
- 2025年甘肃省嘉峪关市人民社区卫生服务中心招聘备考考试题库及答案解析
- 2025云南昆华医院投资管理有限公司(云南新昆华医院)招聘(3人)模拟笔试试题及答案解析
- 2025年东北农业大学财务处招聘3人参考考试题库及答案解析
- 酒店情况诊断报告
- GB/T 45795-2025大气颗粒物PM10、PM2.5质量浓度观测光散射法
- 2025年夏季山东高中学业水平合格考地理试卷试题(含答案)
- DBJ04-T483-2025 海绵型城市道路与广场设计标准
- 农药运输储存管理制度
- TD/T 1036-2013土地复垦质量控制标准
- 童年的阅读测试题及答案
- 爆破备案工作报告
- 客户押款协议书范本
- 地理建筑特征教案课件
- 1.1幂的乘除第4课时(课件)-2024-2025学年七年级数学下册同步课堂(北师大版)
评论
0/150
提交评论